Skip to main content
Log in

Geodesics on strong Kropina manifolds

  • Review Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the behavior of the geodesics of strong Kropina spaces. The global and local aspects of geodesics theory are discussed. Our theory is illustrated with several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Antonelli, P.L., Ingarden, R.S., Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Fundamental Theories of Physics, vol. 58. Kluwer, Dordrecht (1993)

    Book  MATH  Google Scholar 

  2. Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Graduate Texts in Mathematics, vol. 200. Springer, New York (2000)

    Book  MATH  Google Scholar 

  3. Bao, D., Robles, C., Shen, Z.: Zermelo navigation on Riemannian manifolds. J. Differential Geom. 66(3), 377–435 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  5. Berestovskii, V.N., Nikonorov, Yu.G.: Killing vector fields of constant length on Riemannian manifolds. Siberian Math. J. 49(3), 395–407 (2008)

  6. Berestovskii, V.N., Nikonorov, Yu.G: Clifford–Wolf homogeneous Riemannian manifolds. J. Differential Geom. 82(3), 467–500 (2009)

  7. Besse, A.L.: Manifolds All of Whose Geodesics are Closed. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 93. Springer, Berlin (1978)

  8. Caponio, E., Javaloyes, M.A., Sánchez, M.: Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes. (2014). arXiv:1407.5494

  9. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser, Boston (1992)

    Book  Google Scholar 

  10. Javaloyes, M.A., Sánchez, M.: On the definition and examples of Finsler metrics. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13(3), 813–858 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Javaloyes, M.A., Sánchez, M.: Some criteria for Wind Riemannnian completeness and existence of Cauchy hypersurfaces. (2017). arXiv:1703.04810

  12. Javaloyes, M.A., Vitório, H.: Zermelo navigation in pseudo-Finsler metrics. (2014). arXiv:1412.0465

  13. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12(5), 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kobayashi, S.: Transformation Groups in Differential Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 70. Springer, New York (1972)

  15. Klingenberg, W.P.A.: Riemannian Geometry, 2nd edn. De Gruyter Studies in Mathematics, vol. 1. Walter de Gruyter, Berlin (1995)

    Google Scholar 

  16. Kokkendorff, S.L.: On the existence and construction of stably causal Lorentzian metrics. Differential Geom. Appl. 16(2), 133–140 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kropina, V.K.: Projective two-dimensional Finsler spaces with special metric. Trudy Sem. Vector. Tensor. Anal. 11, 277–292 (1961) (in Russian)

  18. Matsumoto, M.: Foundations of Finsler Geometry and Special Finsler Spaces. Kaiseisha Press, Shigaken (1986)

    MATH  Google Scholar 

  19. O’Neill, B.: Semi-Riemannian Geometry. Pure and Applied Mathematics, vol. 103. Academic Press, New York (1983)

    Google Scholar 

  20. Robles, C.: Geodesics in Randers spaces of constant curvature. Trans. Amer. Math. Soc. 359(4), 1633–1651 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sabau, S.V., Shibuya, K., Shimada, H.: Metric structures associated to Finsler metrics. Publ. Math. Debrecen 84(1–2), 89–103 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sabau, S.V., Tanaka, M.: The cut locus and distance function from a closed subset of a Finsler manifold. Houston J. Math. 42(4), 1157–1197 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Shen, Z.: Lectures on Finsler Geometry. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  24. Shen, Z.: Finsler metrics with \({ K}=0\) and \({ S}=0\). Canadian J. Math. 55(1), 112–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vick, J.W.: Homology Theory. Pure and Applied Mathematics, vol. 53. Academic Press, New York (1973)

    MATH  Google Scholar 

  26. Yano, K., Bochner, S.: Curvature and Betti Numbers. Annals of Mathematics Studies, vol. 32. Princeton University Press, Princeton (1953)

    MATH  Google Scholar 

  27. Yoshikawa, R.: Global Kropina Spaces. Ph.D. thesis, Osaka City University (2013)

  28. Yoshikawa, R., Sabau, S.V.: Kropina metrics and Zermelo navigation on Riemannian manifolds. Geom. Dedicata 171(1), 119–148 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wolf, J.A.: Spaces of Constant Curvature, 5th edn. Publish or Perish, Houston (1984)

    MATH  Google Scholar 

  30. Zermelo, E.: Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung. ZAMM Z. Angew. Math. Mech. 11(2), 114–124 (1931)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Miguel Javaloyes, Nobuhiro Innami, Hideo Shimada and Katsumi Okubo for many useful discussions. We are indebted to the anonymous referee whose suggestions and insights have improved the exposition of the paper considerably. We are also grateful to Uraiwan Somboon for her help with some of the drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin V. Sabau.

Appendix

Appendix

1.1 Conditions for a Kropina metric to be projectively equivalent to the Riemannian metric \(\alpha \)

Let be a Kropina space, where and . We denote by the symbol the covariant derivative with respect to Levi-Civita connection on the Riemannian space \((M, \alpha )\). The following notations are customary:

The geodesic spray coefficients of a Kropina space are expressed by

where

and are the coefficients of Levi-Civita connection with respect to \(\alpha \).

We will get the conditions for the Kropina metric F to be projectively equivalent to the Riemannian metric \(\alpha \). Suppose that the Kropina metric is projectively equivalent to Riemannian metric \(\alpha \). Then there exists a function P on , which is positively homogeneous of degree one with respect to y, such that

(33)

(see [2, 18]).

Transvecting (33) by \(y_i\), we get

that is,

(34)

Transvecting (33) by \(b_i\), we get

$$\begin{aligned} -\,\frac{\beta r_{00}+\alpha ^2 s_0}{b^2\alpha ^2}\,\beta -\frac{\alpha ^2 s_0}{2\beta }+\frac{\beta r_{00}+\alpha ^2 s_0}{2\beta }=P\beta , \end{aligned}$$

and substituting (34) in the last equation, we obtain

that is,

$$\begin{aligned} \alpha ^2(b^2 r_{00}- s_0\beta ) =\beta ^2 r_{00}. \end{aligned}$$
(35)

Since \(\beta ^2\) is not divisible by \(\alpha ^2\), it follows that \(r_{00}\) must be divisible by \(\alpha ^2\), that is, there exists a function c(x) of x alone such that

(36)

Substituting (36) to (35), we have

(37)

Since must be divisible by \(\beta \) and \(\alpha ^2\) is not divisible by \(\beta \), it follows that \(c(x)=0\). Substituting \(c(x)=0\) to (36) and (37), we have

$$\begin{aligned} r_{ij}=0, \qquad s_i=0. \end{aligned}$$
(38)

Then from (34) it follows that \(P=0\). Lastly, substituting \(P=0\) and (38) to (33), we get , that is,

$$\begin{aligned} s_{ij}=0. \end{aligned}$$
(39)

From (38) and (39), we get \(b_{i;j}=0,\)

that is, \(b_i\) is parallel with respect to \(\alpha \).

Conversely, suppose that \(b_i\) is parallel with respect to \(\alpha \), then we have , that is the Kropina metric is projectively equivalent to the Riemannian metric \(\alpha \). Furthermore, we have .

Summarizing the above discussion, we obtain

Proposition 9.1

The necessary and sufficient condition for the Kropina metric to be projectively equivalent to the Riemannian metric \(\alpha \) is that the vector field is parallel with respect to \(\alpha \).

1.2 The condition \(b_{i;j}=0\) in terms of the navigation data

By a straightforward computation we have

(40)

where , \(k_i={\partial k}/{\partial x^i}\), and we put

where the notation “” stands for the covariant derivative with respect to h.

Suppose that the equation holds, then

$$\begin{aligned} r_{ij}= s_{ij}=0. \end{aligned}$$
(41)

Furthermore, from the equation it follows that \(b^2\) is constant, hence the equation \(b^2e^\kappa =4\) implies that \(\kappa \) is also constant. Since , equations (40) reduce to

Hence we get

$$\begin{aligned} W_{i|j}=0. \end{aligned}$$
(42)

Conversely, suppose that equation (42) holds and that \(\kappa \) is constant, then equation (40) reduces to (41), and therefore

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabau, S.V., Shibuya, K. & Yoshikawa, R. Geodesics on strong Kropina manifolds. European Journal of Mathematics 3, 1172–1224 (2017). https://doi.org/10.1007/s40879-017-0189-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-017-0189-6

Keywords

Mathematics Subject Classification

Navigation