Skip to main content
Log in

The quiver at the bottom of the twisted nilpotent cone on \(\mathbb P^1\)

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

For the moduli space of Higgs bundles on a Riemann surface of positive genus, critical points of the natural Morse–Bott function lie along the nilpotent cone of the Hitchin fibration and are representations of \(\text{ A }\)-type quivers in a twisted category of holomorphic bundles. The critical points that globally minimize the function are representations of \(\text{ A }_1\). For twisted Higgs bundles on the projective line, the quiver describing the bottom of the cone is more complicated. We determine it here. We show that the moduli space is topologically connected whenever the rank and degree are coprime, thereby verifying conjectural lowest Betti numbers coming from high-energy physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez-Cónsul, L.: Some results on the moduli spaces of quiver bundles. Geom. Dedicata 139, 99–120 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boden, H.U., Yokogawa, K.: Moduli spaces of parabolic Higgs bundles and parabolic \(K(D)\) pairs over smooth curves. I. Int. J. Math. 7(5), 573–598 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bottacin, F.: Symplectic geometry on moduli spaces of stable pairs. Ann. Sci. École Norm. Sup. 28(4), 391–433 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Bradlow, S.B., García-Prada, O., Gothen, P.B.: Moduli spaces of holomorphic triples over compact Riemann surfaces. Math. Ann. 328(1–2), 299–351 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chuang, W., Diaconescu, D.-E., Donagi, R., Pantev, T.: Parabolic refined invariants and Macdonald polynomials. Commun. Math. Phys. 335(3), 1323–1379 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chuang, W., Diaconescu, D.-E., Pan, G.: Wallcrossing and cohomology of the moduli space of Hitchin pairs. Commun. Number Theory Phys. 5(1), 1–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garcia-Fernandez, M., Ross, J.: Balanced metrics on twisted Higgs bundles. Math. Ann. doi:10.1007/s00208-016-1416-z

  8. García-Prada, O., Gothen, P.B., Muñoz, V.: Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles. Memoirs of American Mathematical Society, vol. 187(879). American Mathematical Society, Providence (2007)

  9. García-Prada, O., Heinloth, J., Schmitt, A.: On the motives of moduli of chains and Higgs bundles. J. Eur. Math. Soc. 16(12), 2617–2668 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. García-Prada, O., Ramanan, S.: Twisted Higgs bundles and the fundamental group of compact Kähler manifolds. Math. Res. Lett. 7(4), 517–535 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ginzburg, V.: The global nilpotent variety is Lagrangian. Duke Math. J. 109(3), 511–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gothen, P.B.: The Betti numbers of the moduli space of stable rank \(3\) Higgs bundles on a Riemann surface. Int. J. Math. 5(6), 861–875 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gothen, P.B.: The Topology of Higgs Bundle Moduli Spaces. PhD Thesis, University of Warwick, Coventry (1995). https://people.maths.ox.ac.uk/hitchin/hitchinstudents/gothen.pdf

  14. Gothen, P.B., King, A.D.: Homological algebra of twisted quiver bundles. J. London Math. Soc. 71(1), 85–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hausel, T.: Compactification of moduli of Higgs bundles. J. Reine Angew. Math. 503, 169–192 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Hausel, T., Rodriguez-Villegas, F.: Mixed Hodge polynomials of character varieties. Invent. Math. 174(3), 555–624 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. London Math. Soc. 55(1), 59–126 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hitchin, N.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hitchin, N.: Generalized holomorphic bundles and the \(B\)-field action. J. Geom. Phys. 61(1), 352–362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Laudin, A., Schmitt, A.: Recent results on quiver sheaves. Cent. Eur. J. Math. 10(4), 1246–1279 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Markman, E.: Spectral curves and integrable systems. Compos. Math. 93(3), 255–290 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Mozgovoy, S.: Solutions of the motivic ADHM recursion formula. Int. Math. Res. Not. IMRN 2012(18), 4218–4244 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Mozgovoy, S., Schiffmann, O.: Counting Higgs bundles (2014). arXiv:1411.2101

  25. Nitsure, N.: Moduli space of semistable pairs on a curve. Proc. London Math. Soc. 62(2), 275–300 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rayan, S.: Geometry of Co-Higgs Bundles. PhD Thesis, University of Oxford, Oxford (2011). https://people.maths.ox.ac.uk/hitchin/hitchinstudents/rayan.pdf

  27. Rayan, S.: Co-Higgs bundles on \({\mathbb{P}}^1\). New York J. Math. 19, 925–945 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Schiffmann, O.: Indecomposable vector bundles and stable Higgs bundles over smooth projective curves. Ann. Math. 183(1), 297–362 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schmitt, A.: A remark on semistability of quiver bundles. Eurasian Math. J. 3(1), 110–138 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Simpson, C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Amer. Math. Soc. 1(4), 867–918 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. To, J.H.: Holomorphic Chains on the Projective Line. PhD Thesis, University of Illinois at Urbana-Champaign, Champaign (2012)

Download references

Acknowledgements

This manuscript was started during the 2016 Symposium on Higgs Bundles in Geometry and Physics held at the Internationales Wissenschaftsforum Heidelberg. The author thanks the organizers for their hospitality and for providing a comfortable environment for discussion and work. The author is grateful to Steven Bradlow and Sergey Mozgovoy for useful discussions and comments on the manuscript, and also to Peter Gothen for pointing out a similar phenomenon for small weights in the parabolic case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Rayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayan, S. The quiver at the bottom of the twisted nilpotent cone on \(\mathbb P^1\) . European Journal of Mathematics 3, 1–21 (2017). https://doi.org/10.1007/s40879-016-0120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-016-0120-6

Keywords

Mathematics Subject Classification

Navigation