Skip to main content

Advertisement

Log in

Therapeutic Efficacy of Subcutaneous and Intraperitoneal Injections of a Single Dose of Human Umbilical Mesenchymal Stem Cells in Acute and Chronic Colitis in a Mouse Model

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Intraperitoneal (IP) injection of mesenchymal stem cells (MSCs) has been reported to treat colitis in mice. Complications such as abdominal organ injury and infection are significant concerns. We studied a single injection of human umbilical cord MSCs (hUCMSCs) via the subcutaneous (SC) and IP routes in mice with colitis.

Methods

Male C57BL/6Ncrl mice were divided into control, phosphate-buffered saline (PBS), hUCMSCs SC, and hUCMSCs IP injection groups. Colitis was induced by 3% dextran sulfate sodium (DSS). The disease activity index (DAI), colon length, histology, inflammation score, cytokine and chemokine staining and in vivo stem cell images were recorded.

Results

The DAI in the SC group was significantly lower than that in the IP group during late acute colitis. The colon was significantly shorter, and the colon inflammation score was significantly higher in the PBS group than the control group. There were no significant differences in the colon length and inflammation score between the control group and the SC and IP groups. The expressions of IL17A and Gro-α decreased in the SC group compared with those in the IP group on the 8th and 25th days. hUCMSCs via SC injection accumulated in the subcutaneous tissue to the 25th day.

Conclusion

hUCMSCs via SC and IP injection reduced DSS-induced acute colitis and decreased progression to chronic colitis. The anti-inflammatory effects of hUCMSCs were better in the SC injection group than the IP injection group. In clinical practice in humans, SC injection of hUCMSCs is relatively safer and more convenient than IP injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abraham, C., & Cho, J. H. (2009). Inflammatory bowel disease. The New England Journal of Medicine,361(21), 2066–2078. https://doi.org/10.1056/NEJMra0804647.

    Article  Google Scholar 

  2. Zhang, Y. Z., & Li, Y. Y. (2014). Inflammatory bowel disease: Pathogenesis. World Journal of Gastroenterology,20(1), 91–99. https://doi.org/10.3748/wjg.v20.i1.91.

    Article  Google Scholar 

  3. Loftus, E. V., Jr. (2004). Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology,126(6), 1504–1517.

    Article  Google Scholar 

  4. Garcia-Bosch, O., Ricart, E., & Panes, J. (2010). Review article: Stem cell therapies for inflammatory bowel disease—Efficacy and safety. Alimentary Pharmacology & Therapeutics,32(8), 939–952. https://doi.org/10.1111/j.1365-2036.2010.04439.x.

    Article  Google Scholar 

  5. Lightner, A. L. (2017). Stem cell therapy for inflammatory bowel disease. Clinical and Translational Gastroenterology,8(3), e82. https://doi.org/10.1038/ctg.2017.7.

    Article  Google Scholar 

  6. Lee, H. J., Oh, S. H., Jang, H. W., Kwon, J. H., Lee, K. J., Kim, C. H., et al. (2016). Long-term effects of bone marrow-derived mesenchymal stem cells in dextran sulfate sodium-induced murine chronic colitis. Gut and Liver,10(3), 412–419. https://doi.org/10.5009/gnl15229.

    Article  Google Scholar 

  7. Peyrin-Biroulet, L., Loftus, E. V., Jr., Colombel, J. F., & Sandborn, W. J. (2010). The natural history of adult Crohn's disease in population-based cohorts. The American Journal of Gastroenterology,105(2), 289–297. https://doi.org/10.1038/ajg.2009.579.

    Article  Google Scholar 

  8. Wallace, K. L., Zheng, L. B., Kanazawa, Y., & Shih, D. Q. (2014). Immunopathology of inflammatory bowel disease. World Journal of Gastroenterology,20(1), 6–21. https://doi.org/10.3748/wjg.v20.i1.6.

    Article  Google Scholar 

  9. Iida, N., & Grotendorst, G. R. (1990). Cloning and sequencing of a new gro transcript from activated human monocytes: Expression in leukocytes and wound tissue. Molecular and Cellular Biology,10(10), 5596–5599.

    Article  Google Scholar 

  10. Uguccioni, M., D'Apuzzo, M., Loetscher, M., Dewald, B., & Baggiolini, M. (1995). Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1 alpha and MIP-1 beta on human monocytes. European Journal of Immunology,25(1), 64–68. https://doi.org/10.1002/eji.1830250113.

    Article  Google Scholar 

  11. Ohtsuka, Y., Lee, J., Stamm, D. S., & Sanderson, I. R. (2001). MIP-2 secreted by epithelial cells increases neutrophil and lymphocyte recruitment in the mouse intestine. Gut,49(4), 526–533.

    Article  Google Scholar 

  12. Paplinska, M., Grubek-Jaworska, H., & Chazan, R. (2007). Role of eotaxin in the pathophysiology of asthma. Pneumonologia i alergologia polska,75(2), 180–185.

    Google Scholar 

  13. Chang, Y. L., Lo, H. Y., Cheng, S. P., Chang, K. T., Lin, X. F., Lee, S. P., et al. (2019). Therapeutic effects of a single injection of human umbilical mesenchymal stem cells on acute and chronic colitis in mice. Scientific Reports,9(1), 5832. https://doi.org/10.1038/s41598-019-41910-x.

    Article  Google Scholar 

  14. Phinney, D. G., & Prockop, D. J. (2007). Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair–current views. Stem Cells,25(11), 2896–2902. https://doi.org/10.1634/stemcells.2007-0637.

    Article  Google Scholar 

  15. De Miguel, M. P., Fuentes-Julian, S., Blazquez-Martinez, A., Pascual, C. Y., Aller, M. A., Arias, J., et al. (2012). Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Current Molecular Medicine,12(5), 574–591.

    Article  Google Scholar 

  16. Batsali, A. K., Kastrinaki, M. C., Papadaki, H. A., & Pontikoglou, C. (2013). Mesenchymal stem cells derived from Wharton's Jelly of the umbilical cord: Biological properties and emerging clinical applications. Current Stem Cell Research & Therapy,8(2), 144–155.

    Article  Google Scholar 

  17. Li, T., Xia, M., Gao, Y., Chen, Y., & Xu, Y. (2015). Human umbilical cord mesenchymal stem cells: An overview of their potential in cell-based therapy. Expert Opinion on Biological Therapy,15(9), 1293–1306. https://doi.org/10.1517/14712598.2015.1051528.

    Article  Google Scholar 

  18. Wu, K. H., Chan, C. K., Tsai, C., Chang, Y. H., Sieber, M., Chiu, T. H., et al. (2011). Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation,91(12), 1412–1416. https://doi.org/10.1097/TP.0b013e31821aba18.

    Article  Google Scholar 

  19. He, X. W., He, X. S., Lian, L., Wu, X. J., & Lan, P. (2012). Systemic infusion of bone marrow-derived mesenchymal stem cells for treatment of experimental colitis in mice. Digestive Diseases and Sciences,57(12), 3136–3144. https://doi.org/10.1007/s10620-012-2290-5.

    Article  Google Scholar 

  20. Kim, H. S., Shin, T. H., Lee, B. C., Yu, K. R., Seo, Y., Lee, S., et al. (2013). Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology, 145(6), 1392–1403 e1391–1398. https://doi.org/10.1053/j.gastro.2013.08.033.

    Google Scholar 

  21. Lin, Y., Lin, L., Wang, Q., Jin, Y., Zhang, Y., Cao, Y., et al. (2015). Transplantation of human umbilical mesenchymal stem cells attenuates dextran sulfate sodium-induced colitis in mice. Clinical and Experimental Pharmacology & Physiology,42(1), 76–86. https://doi.org/10.1111/1440-1681.12321.

    Article  Google Scholar 

  22. Liang, L., Dong, C., Chen, X., Fang, Z., Xu, J., Liu, M., et al. (2011). Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic acid (TNBS)-induced colitis. Cell Transplantation,20(9), 1395–1408. https://doi.org/10.3727/096368910X557245.

    Article  Google Scholar 

  23. Banerjee, A., Bizzaro, D., Burra, P., Di Liddo, R., Pathak, S., Arcidiacono, D., et al. (2015). Umbilical cord mesenchymal stem cells modulate dextran sulfate sodium induced acute colitis in immunodeficient mice. Stem Cell Research & Therapy,6, 79. https://doi.org/10.1186/s13287-015-0073-6.

    Article  Google Scholar 

  24. Sun, T., Gao, G. Z., Li, R. F., Li, X., Li, D. W., Wu, S. S., et al. (2015). Bone marrow-derived mesenchymal stem cell transplantation ameliorates oxidative stress and restores intestinal mucosal permeability in chemically induced colitis in mice. American Journal of Translational Research,7(5), 891–901.

    Google Scholar 

  25. Wang, M., Liang, C., Hu, H., Zhou, L., Xu, B., Wang, X., et al. (2016). Intraperitoneal injection (IP), Intravenous injection (IV) or anal injection (AI)? Best way for mesenchymal stem cells transplantation for colitis. Scientific Reports,6, 30696. https://doi.org/10.1038/srep30696.

    Article  Google Scholar 

  26. Lee, M. J., Yoon, T. G., Kang, M., Kim, H. J., & Kang, K. S. (2017). Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats. The Korean Journal of Physiology & Pharmacology,21(2), 153–160. https://doi.org/10.4196/kjpp.2017.21.2.153.

    Article  Google Scholar 

  27. Kim, S. W., Han, H., Chae, G. T., Lee, S. H., Bo, S., Yoon, J. H., et al. (2006). Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger's disease and ischemic limb disease animal model. Stem Cells,24(6), 1620–1626. https://doi.org/10.1634/stemcells.2005-0365.

    Article  Google Scholar 

  28. Melgar, S., Karlsson, A., & Michaelsson, E. (2005). Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: Correlation between symptoms and inflammation. American Journal of Physiology,288(6), G1328–1338. https://doi.org/10.1152/ajpgi.00467.2004.

    Article  Google Scholar 

  29. Chan, C. K., Wu, K. H., Lee, Y. S., Hwang, S. M., Lee, M. S., Liao, S. K., et al. (2012). The comparison of interleukin 6-associated immunosuppressive effects of human ESCs, fetal-type MSCs, and adult-type MSCs. Transplantation,94(2), 132–138. https://doi.org/10.1097/TP.0b013e31825940a4.

    Article  Google Scholar 

  30. Hall, L. J., Faivre, E., Quinlan, A., Shanahan, F., Nally, K., & Melgar, S. (2011). Induction and activation of adaptive immune populations during acute and chronic phases of a murine model of experimental colitis. Digestive Diseases and Sciences,56(1), 79–89. https://doi.org/10.1007/s10620-010-1240-3.

    Article  Google Scholar 

  31. O'Carroll, C., Moloney, G., Hurley, G., Melgar, S., Brint, E., Nally, K., et al. (2013). Bcl-3 deficiency protects against dextran-sodium sulphate-induced colitis in the mouse. Clinical and Experimental Immunology,173(2), 332–342. https://doi.org/10.1111/cei.12119.

    Article  Google Scholar 

  32. Siegmund, B., Rieder, F., Albrich, S., Wolf, K., Bidlingmaier, C., Firestein, G. S., et al. (2001). Adenosine kinase inhibitor GP515 improves experimental colitis in mice. Journal of Pharmacology and Experimental Therapeutics,296(1), 99–105.

    Google Scholar 

  33. Erben, U., Loddenkemper, C., Doerfel, K., Spieckermann, S., Haller, D., Heimesaat, M. M., et al. (2014). A guide to histomorphological evaluation of intestinal inflammation in mouse models. International Journal of Clinical and Experimental Pathology,7(8), 4557–4576.

    Google Scholar 

  34. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods,9(7), 671–675.

    Article  Google Scholar 

  35. Kalchenko, V., Shivtiel, S., Malina, V., Lapid, K., Haramati, S., Lapidot, T., et al. (2006). Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. Journal of Biomedical Optics,11(5), 050507. https://doi.org/10.1117/1.2364903.

    Article  Google Scholar 

  36. Song, J. Y., Kang, H. J., Hong, J. S., Kim, C. J., Shim, J. Y., Lee, C. W., et al. (2017). Umbilical cord-derived mesenchymal stem cell extracts reduce colitis in mice by re-polarizing intestinal macrophages. Scientific Reports,7(1), 9412. https://doi.org/10.1038/s41598-017-09827-5.

    Article  Google Scholar 

  37. Mao, F., Wu, Y., Tang, X., Wang, J., Pan, Z., Zhang, P., et al. (2017). Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease through the regulation of 15-LOX-1 in macrophages. Biotechnology Letters,39(6), 929–938. https://doi.org/10.1007/s10529-017-2315-4.

    Article  Google Scholar 

  38. Hocking, A. M. (2015). The role of chemokines in mesenchymal stem cell homing to wounds. Advances in Wound Care,4(11), 623–630. https://doi.org/10.1089/wound.2014.0579.

    Article  Google Scholar 

  39. Kean, T. J., Lin, P., Caplan, A. I., & Dennis, J. E. (2013). MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells International,2013, 732742. https://doi.org/10.1155/2013/732742.

    Article  Google Scholar 

  40. Becker, S., Quay, J., Koren, H. S., & Haskill, J. S. (1994). Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages. The American Journal of Physiology,266(3 Pt 1), L278–286. https://doi.org/10.1152/ajplung.1994.266.3.L278.

    Article  Google Scholar 

  41. Moser, B., Clark-Lewis, I., Zwahlen, R., & Baggiolini, M. (1990). Neutrophil-activating properties of the melanoma growth-stimulatory activity. The Journal of Experimental Medicine,171(5), 1797–1802.

    Article  Google Scholar 

  42. Schumacher, C., Clark-Lewis, I., Baggiolini, M., & Moser, B. (1992). High- and low-affinity binding of GRO alpha and neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils. Proceedings of the National Academy of Sciences of the United States of America,89(21), 10542–10546.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Taoyuan General Hospital, Taiwan (PTH10708 and PTH10709).

Funding

This study was funded by Taoyuan General Hospital, Taiwan (Grant Number: PTH10708 and PTH10709).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Fa Hsieh or Chin-Kan Chan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This work was approved by the institutional review board of Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (IRB Number: TYGH104043). The research was conducted in accordance with the Helsinki Declaration. All applicable international, national, and institutional guidelines for the care and use of animals were followed. All animal experiments were performed in accordance with the relevant guidelines and regulations of the Animal Ethics Committee of Chung Yuan Christian University (IACUC Approval Number: 106019) accredited for laboratory animal care by the Ministry of Health and Welfare of Taiwan, Republic of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YL., Lo, HY., Cheng, SP. et al. Therapeutic Efficacy of Subcutaneous and Intraperitoneal Injections of a Single Dose of Human Umbilical Mesenchymal Stem Cells in Acute and Chronic Colitis in a Mouse Model. J. Med. Biol. Eng. 40, 82–90 (2020). https://doi.org/10.1007/s40846-019-00494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-019-00494-7

Keywords

Jel Classification

Navigation