Skip to main content
Log in

Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiOx/C nanosheets for high-performance lithium storage

二氧化碳快速剥离Zintl相硅化钙制备超薄Si/SiOx/C 纳米片及其高效储锂性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Semiconducting silicon (Si) nanomaterials have great potential for the applications in electronics, physics, and energy storage fields. However, to date, it is still a challenge to realize the batch production of Si nanomaterials via efficient and low-cost approaches, owing to some long-standing shortcomings, e.g., complex procedures and time and/or energy consumption. Herein, we report a green and inexpensive method to rapidly obtain two-dimensional (2D) free-standing Si/SiOx nanosheets via the rapid thermal exfoliation of layered Zintl compound CaSi2. With the help of the rapid exfoliation reaction of CaSi2 in the atmosphere of greenhouse gas CO2, and the following mild sonication, 2D free-standing Si/SiOx nanosheets can be produced with very high yield. After applying the coating of a thin carbon outer layer, the electrodes of Si/SiOx/C nanosheets serving as the anodes for lithium-ion batteries exhibit ultrahigh reversible capacity and outstanding electrochemical stability. We expect this study will provide new insights and inspirations for the convenient and batch production of nanostructural Si-based anode materials towards high-performance lithium-ion batteries.

摘要

半导体硅(Si)纳米材料在电子、物理、储能等领域有着广阔的 应用前景. 然而, 到目前为止, 由于一些长期存在的难题, 如制备工艺复 杂, 时间、能耗较大等, 通过高效低成本的途径实现纳米硅材料的规模 化生产依然具有挑战. 在本工作中, 我们报道了一种绿色、廉价的纳米 Si材料的制备方法: 通过CO2快速热剥离层状Zintl相化合物CaSi2高产 率地制备二维超薄Si/SiOx纳米片. 我们发现CaSi2可以在一定条件下和 CO2稳定反应. 利用此特性并借助温和超声处理, 可以高产量制备出超 薄Si/SiOx纳米片. 通过导电化处理, 得到Si/SiOx/C复合纳米片. 该复合 材料作为锂离子电池的负极材料, 具有较高的可逆容量和优异的电化 学稳定性. 我们希望本研究能为批量生产高容量锂离子电池的硅基纳 米结构材料提供新的思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang G, Yang L, Han Q, et al. Conductive Li3.08Cr0.02Si0.09V0.9O4 anode material: Novel “zero-strain” characteristic and superior electrochemical Li+ storage. Adv Energy Mater, 2020, 10: 1904267

    Article  CAS  Google Scholar 

  2. Xiao Z, Lei C, Yu C, et al. Si@Si3N4@C composite with egg-like structure as high-performance anode material for lithium ion batteries. Energy Storage Mater, 2020, 24: 565–573

    Article  Google Scholar 

  3. Li J, Han L, Li Y, et al. MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem Eng J, 2020, 380: 122590

    Article  CAS  Google Scholar 

  4. Chang X, Xie Z, Liu Z, et al. Aluminum: An underappreciated anode material for lithium-ion batteries. Energy Storage Mater, 2020, 25: 93–99

    Article  Google Scholar 

  5. Sahu SR, Rikka VR, Haridoss P, et al. A novel α-MoO3/single-walled carbon nanohorns composite as high-performance anode material for fast-charging lithium-ion battery. Adv Energy Mater, 2020, 10: 2001627

    Article  CAS  Google Scholar 

  6. Xiao Z, Yu C, Lin X, et al. TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material. Nano Energy, 2020, 77: 105082

    Article  CAS  Google Scholar 

  7. Chan CK, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotech, 2008, 3: 31–35

    Article  CAS  Google Scholar 

  8. Wu H, Chan G, Choi JW, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotech, 2012, 7: 310–315

    Article  CAS  Google Scholar 

  9. Rahman MA, Song G, Bhatt AI, et al. Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv Funct Mater, 2016, 26: 647–678

    Article  CAS  Google Scholar 

  10. An Y, Fei H, Zeng G, et al. Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano, 2018, 12: 4993–5002

    Article  CAS  Google Scholar 

  11. Rodrigues MTF, Babu G, Gullapalli H, et al. A materials perspective on Li-ion batteries at extreme temperatures. Nat Energy, 2017, 2: 17108

    Article  CAS  Google Scholar 

  12. Lu J, Wu T, Amine K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat Energy, 2017, 2: 17011

    Article  CAS  Google Scholar 

  13. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197–200

    Article  CAS  Google Scholar 

  15. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  CAS  Google Scholar 

  16. Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699–712

    Article  CAS  Google Scholar 

  17. Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2: 17033

    Article  CAS  Google Scholar 

  18. Tang L, Li T, Luo Y, et al. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano, 2020, 14: 4646–4653

    Article  CAS  Google Scholar 

  19. Fu Q, Han J, Wang X, et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv Mater, 2021, 33: 2170045

    Article  CAS  Google Scholar 

  20. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2: 16098

    Article  CAS  Google Scholar 

  21. Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano, 2012, 6: 1322–1331

    Article  CAS  Google Scholar 

  22. Tan TL, Jin HM, Sullivan MB, et al. High-throughput survey of ordering configurations in MXene alloys across compositions and temperatures. ACS Nano, 2017, 11: 4407–4418

    Article  CAS  Google Scholar 

  23. Ghidiu M, Lukatskaya MR, Zhao MQ, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516: 78–81

    Article  CAS  Google Scholar 

  24. Gu J, Zhu Q, Shi Y, et al. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano, 2020, 14: 891–898

    Article  Google Scholar 

  25. Wu X, Ge R, Chen PA, et al. Thinnest nonvolatile memory based on monolayer h-BN. Adv Mater, 2019, 31: 1806790

    Article  Google Scholar 

  26. Weng Q, Wang X, Wang X, et al. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem Soc Rev, 2016, 45: 3989–4012

    Article  CAS  Google Scholar 

  27. Huang Y, Chen B, Duan J, et al. Graphitic carbon nitride (g-C3N4): An interface enabler for solid-state lithium metal batteries. Angew Chem Int Ed, 2020, 59: 3699–3704

    Article  CAS  Google Scholar 

  28. Deng Y, Liu J, Huang Y, et al. Engineering the photocatalytic behaviors of g/C3N4-based metal-free materials for degradation of a representative antibiotic. Adv Funct Mater, 2020, 30: 2002353

    Article  CAS  Google Scholar 

  29. Patnaik S, Sahoo DP, Parida K. Recent advances in anion doped g-C3N4 photocatalysts: A review. Carbon, 2021, 172: 682–711

    Article  CAS  Google Scholar 

  30. Tang J, Yin Q, Wang Q, et al. Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries. Nanoscale, 2019, 11: 10984–10991

    Article  CAS  Google Scholar 

  31. Xu K, Ben L, Li H, et al. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res, 2015, 8: 2654–2662

    Article  CAS  Google Scholar 

  32. Yue XY, Abulikemu A, Li XL, et al. Vermiculite derived porous silicon nanosheet as a scalable and low cost anode material for lithium-ion batteries. J Power Sources, 2019, 410–411: 132–136

    Article  Google Scholar 

  33. Ryu J, Hong D, Choi S, et al. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano, 2016, 10: 2843–2851

    Article  CAS  Google Scholar 

  34. Yu X, Xue F, Huang H, et al. Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries. Nanoscale, 2014, 6: 6860–6865

    Article  CAS  Google Scholar 

  35. Kim WS, Hwa Y, Shin JH, et al. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale, 2014, 6: 4297–4302

    Article  CAS  Google Scholar 

  36. Chen S, Chen Z, Xu X, et al. Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. Small, 2018, 14: 1703361

    Article  Google Scholar 

  37. Wang H, Tang W, Ni L, et al. Synthesis of silicon nanosheets from kaolinite as a high-performance anode material for lithium-ion batteries. J Phys Chem Solids, 2020, 137: 109227

    Article  CAS  Google Scholar 

  38. An Y, Tian Y, Wei C, et al. Scalable and physical synthesis of 2D silicon from bulk layered alloy for lithium-ion batteries and lithium metal batteries. ACS Nano, 2019, 13: 13690–13701

    Article  CAS  Google Scholar 

  39. Ko M, Chae S, Ma J, et al. Scalable synthesis of silicon-nanolayerembedded graphite for high-energy lithium-ion batteries. Nat Energy, 2016, 1: 16113

    Article  CAS  Google Scholar 

  40. Gu J, Du Z, Zhang C, et al. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv Energy Mater, 2017, 7: 1700447

    Article  Google Scholar 

  41. Kumai Y, Shirai S, Sudo E, et al. Characteristics and structural change of layered polysilane (Si6H6) anode for lithium ion batteries. J Power Sources, 2011, 196: 1503–1507

    Article  CAS  Google Scholar 

  42. Sun L, Su T, Xu L, et al. Two-dimensional ultra-thin SiOx (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes. Chem Commun, 2016, 52: 4341–4344

    Article  CAS  Google Scholar 

  43. Shallenberger JR. Determination of chemistry and microstructure in SiOx (0.1 < x < 0.8) films by X-ray photoelectron spectroscopy. J Vacuum Sci Tech A-Vacuum Surfs Films, 1996, 14: 693–698

    Article  CAS  Google Scholar 

  44. Ulusoy Ghobadi TG, Ghobadi A, Okyay T, et al. Controlling luminescent silicon nanoparticle emission produced by nanosecond pulsed laser ablation: role of interface defect states and crystallinity phase. RSC Adv, 2016, 6: 112520

    Article  CAS  Google Scholar 

  45. Ntais S, Dracopoulos V, Siokou A. TiCl4(THF)2 impregnation on a flat SiOx/Si(100) and on polycrystalline Au foil: determination of surface species using XPS. J Mol Catal A-Chem, 2004, 220: 199–205

    Article  CAS  Google Scholar 

  46. Xun S, Song X, Grass ME, et al. Improved initial performance of Si nanoparticles by surface oxide reduction for lithium-ion battery application. Electrochem Solid-State Lett, 2011, 14: A61

    Article  CAS  Google Scholar 

  47. Xue H, Wu Y, Zou Y, et al. Unraveling metal oxide role in exfoliating graphite: new strategy to construct high-performance graphene-modified SiOx-based anode for lithium-ion batteries. Adv Funct Mater, 2020, 30: 1910657

    Article  CAS  Google Scholar 

  48. Su A, Li J, Dong J, et al. An amorphous/crystalline incorporated Si/SiOx anode material derived from biomass corn leaves for lithium-ion batteries. Small, 2020, 16: 2001714

    Article  CAS  Google Scholar 

  49. Li G, Huang LB, Yan MY, et al. An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy, 2020, 74: 104890

    Article  CAS  Google Scholar 

  50. Jiang Y, Liu S, Ding Y, et al. Modification based on primary particle level to improve the electrochemical performance of SiO-based anode materials. J Power Sources, 2020, 467: 228301

    Article  CAS  Google Scholar 

  51. Yan MY, Li G, Zhang J, et al. Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl Mater Interfaces, 2020, 12: 27202–27209

    Article  CAS  Google Scholar 

  52. Li G, Li JY, Yue FS, et al. Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy, 2019, 60: 485–492

    Article  CAS  Google Scholar 

  53. Lee J, Moon J, Han SA, et al. Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano, 2019, 13: 9607–9619

    Article  CAS  Google Scholar 

  54. Han M, Yu J. Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes. J Power Sources, 2019, 414: 435–443

    Article  CAS  Google Scholar 

  55. Xu Q, Sun JK, Yin YX, et al. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv Funct Mater, 2018, 28: 1705235

    Article  Google Scholar 

  56. Li Z, Zhao H, Wang J, et al. Rational structure design to realize highperformance SiOx@C anode material for lithium ion batteries. Nano Res, 2020, 13: 527–532

    Article  CAS  Google Scholar 

  57. Lin J, Peng H, Kim JH, et al. Lithium fluoride coated silicon nanocolumns as anodes for lithium ion batteries. ACS Appl Mater Interfaces, 2020, 12: 18465–18472

    Article  CAS  Google Scholar 

  58. Shi J, Zu L, Gao H, et al. Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management. Adv Funct Mater, 2020, 30: 2002980

    Article  CAS  Google Scholar 

  59. Carroll GM, Schulze MC, Martin TR, et al. SiO2 is wasted space in single-nanometer-scale silicon nanoparticle-based composite anodes for Li-ion electrochemical energy storage. ACS Appl Energy Mater, 2020, 3: 10993–11001

    Article  CAS  Google Scholar 

  60. Sun Q, Zhang B, Fu ZW. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries. Appl Surf Sci, 2008, 254: 3774–3779

    Article  CAS  Google Scholar 

  61. Yu Q, Ge P, Liu Z, et al. Ultrafine SiOx/C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. J Mater Chem A, 2018, 6: 14903–14909

    Article  CAS  Google Scholar 

  62. An Y, Tian Y, Zhang Y, et al. Two-dimensional silicon/carbon from commercial alloy and CO2 for lithium storage and flexible Ti3C2Tx MXene-based lithium-metal batteries. ACS Nano, 2020, 14: 17574–17588

    Article  CAS  Google Scholar 

  63. Lin H, Qiu W, Liu J, et al. Silicene: Wet-chemical exfoliation synthesis and biodegradable tumor nanomedicine. Adv Mater, 2019, 31: 1903013

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2017YFA0208200 and 2016YFB0700600), the Fundamental Research Funds for the Central Universities of China (0205-14380219), the Projects of National Natural Science Foundation of China (22022505, 21872069 and 51761135104), the Natural Science Foundation of Jiangsu Province (BK20181056, BK20180008 and BK20191042), Jiangsu Postdoctoral Science Fundation (2020Z258), and the Funding for School-level Research Projects of Yancheng Institute of Technology (xjr2019006).

Author information

Authors and Affiliations

Authors

Contributions

Sun L and Jin Z conceived and designed the study; Sun L, Xie J and Huang S performed the synthesis and electrochemical test; Liu Y and Zhang L performed the SEM and TEM measurements; Wu J contributed to the reaction mechanism analysis. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Lin Sun  (孙林) or Zhong Jin  (金钟).

Additional information

Lin Sun received his MSc degree in chemical engineering, from the School of Petrochemical Engineering, Changzhou University. He obtained the PhD degree in chemistry from Nanjing University. His research interests are focused on organic/inorganic porous materials for adsorption, separation, catalysis, optoelectronics, and energy science by using new synthetic methods and strategies under the guidance of modern computational chemistry.

Zhong Jin received his BSc (2003) and PhD (2008) in chemistry from Peking University. He worked as a postdoctoral scholar at Rice University and Massachusetts Institute of Technology. Now he is a professor at the School of Chemistry and Chemical Engineering, Nanjing University. He leads a research group on functional nanomaterials and devices for energy conversion and storage.

Conflict of interest

The authors declare no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Supplementary Information

40843_2021_1708_MOESM1_ESM.pdf

Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiOx/C nanosheets for high-performance lithium storage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Xie, J., Huang, S. et al. Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiOx/C nanosheets for high-performance lithium storage. Sci. China Mater. 65, 51–58 (2022). https://doi.org/10.1007/s40843-021-1708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1708-6

Keywords

Navigation