Skip to main content
Log in

Rational structure design to realize high-performance SiOx@C anode material for lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silicon suboxide (SiOx) is considered to be one of the most promising materials for next-generation anode due to its high energy density. For its preparation, the wet-chemistry method is a cost-effective and readily scalable route, while the so-derived SiOx usually shows lower capacity compared with that prepared by high temperature-vacuum evaporation route. Herein, we present an elaborate particle structure design to realize the wet-chemistry preparation of a high-performance SiOx/C nanocomposite. Dandelionlike highly porous SiOx particle coated with conformal carbon layer is designed and prepared. The highly-porous SiOx skeleton provides plenty specific surface for intimate contact with carbon layer to allow a deep reduction of SiOx to a low O/Si ratio at relatively low temperature (700 °C), enabling a high specific capacity. The abundant mesoscale voids effectively accommodate the volume variation of SiOx skeleton, ensuring the high structural stability of SiOx@C during lithiation/delithiation process. Meanwhile, the three-dimensional (3D) conformal carbon layer provides a fast electron/ion transportation, allowing an enhanced electrode reaction kinetics. Owing to the optimized O/Si ratio and well-engineered structure, the prepared SiOx@C electrode delivers an ultra-high capacity (1,115.8 mAh·g−1 at 0.1 A·g−1 after 200 cycles) and ultra-long lifespan (635 mAh·g−1 at 2 A·g−1 after 1,000 cycles). To the best of our knowledge, the achieved combination of ultra-high specific capacity and ultra-long cycling life is unprecedented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today2015, 18, 252–264.

    CAS  Google Scholar 

  2. Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy2016, 1, 16071.

    CAS  Google Scholar 

  3. Wang, P. Y.; Tian, J.; Hu, J. L.; Zhou, X. J.; Li, C. L. Supernormal conversion anode consisting of high-density MoS2 bubbles wrapped in thin carbon network by self-sulfuration of polyoxometalate complex. ACS Nano2017, 11, 7390–7400.

    CAS  Google Scholar 

  4. Zhao, Y.; Wang, L. P.; Sougrati, M. T.; Feng, Z. X.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. C. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater.2017, 7, 1601424.

    Google Scholar 

  5. Lu, Y.; Yu, L.; Lou, X. W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem2018, 4, 972–996.

    CAS  Google Scholar 

  6. Franco Gonzalez, A.; Yang, N. H.; Liu, R. S. Silicon anode design for lithium-ion batteries: Progress and perspectives. J. Phys. Chem. C2017, 121, 27775–27787.

    CAS  Google Scholar 

  7. Qu, F.; Li, C. L.; Wang, Z. M.; Strunk, H. P.; Maier, J. Metalinduced crystallization of highly corrugated silicon thick films as potential anodes for Li-ion batteries. ACS Appl. Mater. Interfaces2014, 6, 8782–8788.

    CAS  Google Scholar 

  8. Jin, Y.; Zhu, B.; Lu, Z. D.; Liu, N.; Zhu, J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater.2017, 7, 1700715.

    Google Scholar 

  9. Qu, F.; Li, C. L.; Wang, Z. M.; Wen, Y. R.; Richter, G.; Strunk, H. P. Eutectic nano-droplet template injection into bulk silicon to construct porous frameworks with concomitant conformal coating as anodes for Li-ion batteries. Sci. Rep. 2015, 5, 10381.

  10. Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Chen, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy2017, 31, 113–143.

    CAS  Google Scholar 

  11. Zhang, Y. F.; Li, Y. J.; Wang, Z. Y.; Zhao, K. J. Lithiation of SiO2 in Li-ion batteries: In situ transmission electron microscopy experiments and theoretical studies. Nano Lett.2014, 14, 7161–7170.

    CAS  Google Scholar 

  12. Chang, W. S.; Park, C. M.; Kim, J. H.; Kim, Y. U.; Jeong, G.; Sohn, H. J. Quartz (SiO2): A new energy storage anode material for Li-ion batteries. Energy Environ. Sci.2012, 5, 6895–6899.

    CAS  Google Scholar 

  13. Takezawa, H.; Iwamoto, K.; Ito, S.; Yoshizawa, H. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries. J. Power Sources2013, 244, 149–157.

    CAS  Google Scholar 

  14. Shi, L.; Wang, W. K.; Wang, A. B.; Yuan, K. G.; Jin, Z. Q.; Yang, Y. S. Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. J. Power Sources2016, 318, 184–191.

    CAS  Google Scholar 

  15. Yamada, M.; Ueda, A.; Matsumoto, K.; Ohzuku, T. Silicon-based negative electrode for high-capacity lithium-ion batteries: “SiO”-carbon composite. J. Electrochem. Soc.2011, 158, A417–A421.

    CAS  Google Scholar 

  16. Liu, Z. H.; Guan, D. D.; Yu, Q.; Xu, L.; Zhuang, Z. C.; Zhu, T.; Zhao, D. Y.; Zhou, L.; Mai, L. Q. Monodisperse and homogeneous SiOx/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater.2018, 13, 112–118.

    CAS  Google Scholar 

  17. An, W. L.; Fu, J. J.; Su, J. J.; Wang, L.; Peng, X.; Wu, K.; Chen, Q. Y.; Bi, Y J.; Gao, B.; Zhang, X. M. Mesoporous Hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithiumion battery anodes. J. Power Sources2017, 345, 227–236.

    CAS  Google Scholar 

  18. Li, Z. H.; He, Q.; He, L.; Hu, P.; Li, W.; Yan, H. W.; Peng, X. Z.; Huang, C. Y.; Mai, L. Q. Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anodes. J. Mater. Chem. A2017, 5, 4183–4189.

    CAS  Google Scholar 

  19. Han, M. S.; Yu, J. Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes. J. Power Sources2019, 414, 435–43.

    CAS  Google Scholar 

  20. Li, Z. L.; Zhao, H. L.; Lv, P. P.; Zhang, Z. J.; Zhang, Y.; Du, Z. H.; Teng, Y. Q.; Zhao, L. N.; Zhu, Z. M. Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv. Funct. Mater.2018, 28, 1605711.

    Google Scholar 

  21. Zhang, P. J.; Wang, L. B.; Xie, J.; Su, L. W.; Ma, C. A. Micro/nano-complex-structure SiOx-PANI-Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. J. Mater. Chem. A2014, 2, 37763782.

    Google Scholar 

  22. Li, H. H.; Wu, X. L.; Sun, H. Z.; Wang, K.; Fan, C. Y.; Zhang, L. L.; Yang, F. M.; Zhang, J. P. Dual-porosity SiO2/C nanocomposite with enhanced lithium storage performance. J. Phys. Chem. C2015, 119, 3495–3501.

    CAS  Google Scholar 

  23. Yu, Q.; Ge, P. P.; Liu, Z. H.; Xu, M.; Yang, W.; Zhou, L.; Zhao, D. Y.; Mai, L. Q. Ultrafine SiOx/C nanospheres and their pomegranatelike assemblies for high-performance lithium storage. J. Mater. Chem. A2018, 6, 14903–14909.

    CAS  Google Scholar 

  24. Ren, Y. R.; Wu, X. M.; Li, M. Q. Highly stable SiOx/multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries. Electrochim. Acta2016, 206, 328–336.

    CAS  Google Scholar 

  25. Ren, Y. R.; Li, M. Q. Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance. J. Power Sources2016, 306, 459–466.

    CAS  Google Scholar 

  26. Li, M. Q.; Yu, Y.; Li, J.; Chen, B. L.; Konarov, A.; Chen, P. Fabrication of graphene nanoplatelets-supported SiOx-disordered carbon composite and its application in lithium-ion batteries. J. Power Sources2015, 293, 976–982.

    CAS  Google Scholar 

  27. Wu, W. J.; Shi, J.; Liang, Y. H.; Liu, F.; Peng, Y.; Yang, H. B. A low-cost and advanced SiOx-C composite with hierarchical structure as an anode material for lithium-ion batteries. Phys. Chem. Chem. Phys. 2015, 17, 13451–13456.

    CAS  Google Scholar 

  28. Li, M. Q.; Zeng, Y.; Ren, Y. R.; Zeng, C. M.; Gu, J. W.; Feng, X. F.; He, H. Y. Fabrication and lithium storage performance of sugar appleshaped SiOx@C nanocomposite spheres. J. Power Sources2015, 288, 53–61.

    CAS  Google Scholar 

  29. Yang, H. W.; Lee, D. I.; Kang, N.; Yoo, J. K.; Myung, S. T.; Kim, J.; Kim, S. J. Highly enhancement of the SiOx nanocomposite through Ti-doping and carbon-coating for high-performance Li-ion battery. J. Power Sources2018, 400, 613–620.

    CAS  Google Scholar 

  30. Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon2005, 43, 1731–1742.

    CAS  Google Scholar 

  31. Wang, Y.; Alsmeyer, D. C.; McCreery, R. L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater.1990, 2, 557–563.

    CAS  Google Scholar 

  32. Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett.2006, 88, 163106.

    Google Scholar 

  33. Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B2000, 61, 1409514107.

    CAS  Google Scholar 

  34. Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res.2015, 8, 2654–2662.

    CAS  Google Scholar 

  35. Park, M. S.; Park, E.; Lee, J.; Jeong, G; Kim, K. J.; Kim, J. H.; Kim, Y. J.; Kim, H. Hydrogen silsequioxane-derived Si/SiOx nanospheres for high-capacity lithium storage materials. ACS Appl. Mater. Interfaces2014, 6, 9608–9613.

    CAS  Google Scholar 

  36. Yang, C. W.; Hu, X. G.; Wang, D. L.; Dai, C. S.; Zhang, L.; Jin, H. B.; Agathopoulos, S. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation. J. Power Sources2006, 160, 187–193.

    CAS  Google Scholar 

  37. Balamurugan, A.; Kannan, S.; Selvaraj, V.; Rajeswari, S. Development and spectral characterization of poly(methyl methacrylate)/hydroxyapatite composite for biomedical applications. Trends Biomater. Artif. Organs2004, 18, 41–45.

    Google Scholar 

  38. Liu, Z. H.; Zhao, Y. L.; He, R. H.; Luo, W.; Meng, J. S.; Yu, Q.; Zhao, D. Y.; Zhou, L.; Mai, L. Q. Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Mater.2019, 19, 299–305.

    Google Scholar 

  39. Xu, T.; Wang, Q.; Zhang, J.; Xie, X. H.; Xia, B. J. Green synthesis of dual carbon conductive networks encapsulated hollow SiOx spheres for superior lithium-ion batteries. ACS Appl. Mater. Interfaces2019, 11, 19959–19967.

    CAS  Google Scholar 

  40. Zhao, H.; Wang, Z. H.; Lu P.; Jiang, M.; Shi, F. F.; Song, X. Y.; Zheng, Z. Y.; Zhou, X.; Fu, Y. B.; Abdelbast, G et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett.2014, 14, 6704–6710.

    CAS  Google Scholar 

  41. Zhao, J.; Lu, Z. D.; Liu, N.; Lee, H. W.; McDowell, M. T.; Cui, Y. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun.2014, 5, 5088.

    CAS  Google Scholar 

  42. Cao, Z. Y.; Xu, P. Y.; Zhai, H. W.; Du, S. C.; Mandal, J.; Dontigny, M.; Zaghib, K.; Yang, Y. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density. Nano Lett.2016, 16, 7235–7240.

    CAS  Google Scholar 

  43. Liu, D.; Chen, C. R.; Hu, Y. Y.; Wu, J.; Zheng, D.; Xie, Z. Z.; Wang, W.; Qu, D. Y.; Li, J. S.; Qu, D. Y. Reduced graphene-oxide/highly ordered mesoporous SiOx hybrid material as an anode material for lithium ion batteries. Electrochim. Acta2018, 273, 26–33.

    CAS  Google Scholar 

  44. Gao, C. H.; Zhao, H. L.; Lv, P. P.; Wang, C. M.; Wang, J.; Zhang, T.; Xia, Q. Superior cycling performance of SiOx/C composite with arrayed mesoporous architecture as anode material for lithium-ion batteries. J. Electrochem. Soc.2014, 161, A2216-A2221.

    CAS  Google Scholar 

  45. Lv, P. P.; Zhao, H. L.; Gao, C. H.; Zhang, T. H.; Liu, X. Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochimi. Acta2015, 152, 345–351.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1637202 and 51634003), the National Key R&D Program of China (No. 2018YFB0905600), and Beijing Municipal Education Commission-Natural Science Foundation Joint Key Project (No. KZ201910005003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailei Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhao, H., Wang, J. et al. Rational structure design to realize high-performance SiOx@C anode material for lithium ion batteries. Nano Res. 13, 527–532 (2020). https://doi.org/10.1007/s12274-020-2644-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2644-9

Keywords

Navigation