Skip to main content
Log in

A Measure of SCM Bullwhip Effect Under Mixed Autoregressive-Moving Average with Errors Heteroscedasticity (ARMA(1,1)–GARCH(1,1)) Model

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

Measuring the bullwhip effect, a phenomenon in which demand variability increases as one moves up the supply chain, is a major issue in supply chain management. In this paper, we quantify the impact of the bullwhip effect on a simple two-stage supply chain consisting of one supplier and one retailer, where the retailer employed a base-stock policy to replenish their inventory. The demand forecast was performed via a mixed autoregressive moving average model, ARMA(1,1), in which ARMA model errors have the GARCH process and the model’s variance changes with time i.e. the model has conditional heteroscedasticity in order to simulate the bullwhip effect which has a non-linear behavior. The definition of bullwhip effect has been expanded to “over time bullwhip effect” (conditional bullwhip effect). We use the minimum mean-square error forecasting technique and also investigate the effects of the autoregressive coefficient, the moving average parameter and the lead time on the bullwhip effect. Moreover, bullwhip effect has been compared in linear demand ARMA and none linear demand ARMA–GARCH process. The results show that the bullwhip effect can be decreased by choosing correct coefficients in demand process through none linear demand process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SCM:

Supply chain management

ARMA:

Autoregressive moving average

GARCH:

Generalized autoregressive conditional heteroscedasticity

References

  1. Baillie RT, Bollerslev T (1992) Prediction in dynamic models with time-dependent conditional variances. J Econom 52:91–113

    Article  Google Scholar 

  2. Bandyopadhyay S, Bhattacharya B (2013) A generalized measure of bullwhip effect in supply chain with ARMA demand process under various replenishment policies. Int J Adv Manuf Technol 68:963–979

    Article  Google Scholar 

  3. Barlas Y, Gunduz B (2011) Demand forecasting and sharing strategies to reduce fluctuations and bullwhip effect in supply chains. J Oper Res Soc 62:458–473

    Article  Google Scholar 

  4. Bayraktar E, Lenny Koh SC, Gunasekaran A, Sari K, Tatoglu E (2008) The role of forecasting on bullwhip effect for E-SCM applications. Int J Prod Econ 113(1):193–204

    Article  Google Scholar 

  5. Blanchard OJ (1983) The production and inventory behavior of American automobile industry. J Polit Econ 91:365–400

    Article  Google Scholar 

  6. Blinder AS (1982) Inventories and sticky prices: more on the micro foundations of macroeconomics. Am Econ Rev 72:334–348

    Google Scholar 

  7. Blinder AS (1986) Can the production smoothing model of inventory behavior be saved? Q J Econ 1001:431–454

    Article  Google Scholar 

  8. Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31:307–327

    Article  Google Scholar 

  9. Carbonneau R, Laframboise K, Vahidov R (2006) Application of machine learning technique for supply chain demand forecasting. Eur J Oper Res 184(3):1140–1154

    Article  Google Scholar 

  10. Chatfield D, Kim J, Harrison T, Hayya J (2004) The bullwhip \(\text{ e}\_\text{ect }\) in supply chain-impact of stochastic lead times, information quality, and information sharing: a simulation study”. Prod Oper Manag 13(2):340–353

    Google Scholar 

  11. Chen F, Drezner Z, Ryan JK, Simchi-Levi D (1998) The bullwhip effect: managerial insights on the impact of forecasting and information on variability in a supply chain. In: Tayur S (ed) Quantitative models for supply chain management. Kluwer, Dordrecht, pp 418–439

    Google Scholar 

  12. Chen F, Drezner Z, Ryan JK, Simchi-Levi D (2000a) Quantifying the bullwhip effect in a simple supply chain. Manag Sci 46(1):436–443

    Article  Google Scholar 

  13. Chen F, Drezner Z, Ryan JK, Simchi-Levi D (2000b) The impact of exponential smoothing forecasts on the bullwhip effect. Nav Res Logist 47(2):269–286

    Article  Google Scholar 

  14. Cho DW, Lee YH (2012) Bullwhip effect measure in a seasonal supply chain. J Intell Manuf 23(6):2295–2305

  15. Chopra S, Meindl P (2001) Obstacles to coordination in a supply chain. In: Supply chain management: strategy, planning, and operations. Prentice Hall, New Jersey, pp 361–368

  16. Chopra S, Meindl P (2007) Supply chain management, 3rd edn. Englewood Cliffs, NJ

  17. Dejonckheere J, Disney SM, Lambrecht MR, Towill DR (2003) Measuring and avoiding the bullwhip effect: a control theoretic approach. Eur J Oper Res 147(3):567–590

    Article  Google Scholar 

  18. Duc TTH, Luong HT, Kim YD (2008) A measure of bullwhip effect in supply chains with a mixed autoregressive-moving average demand process. Eur J Oper Res 187(1):243–256

    Article  Google Scholar 

  19. Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1007

    Article  Google Scholar 

  20. Fazel Zarandi MR, Gamasaee R (2013) A type-2 fuzzy system model for reducing bullwhip effects in supply chains and its application in steel manufacturing. Sci Iran 20(4):879–899

    Google Scholar 

  21. Forrester JW (1958) Industrial dynamics—a major break-through for decision making. Harv Bus Rev 36(2):37–66

    Google Scholar 

  22. Forrester J (1961) Industrial Dynamics. MIT Press, New York

  23. Gaalman G, Disney SM (2006) State space investigation of the bullwhip problem with ARMA(1,1) demand processes. Int J Prod Econ 104(2):327–339

    Article  Google Scholar 

  24. Gaalman G, Disney SM (2009) On bullwhip in a family of order-up-to policies with ARMA(2,2) demand and arbitrary lead-times Int. J Prod Econ 121:454–463

    Article  Google Scholar 

  25. Heyman D, Sobel M (1984) Stochastic models in operations research. McGraw-Hill, New York

    Google Scholar 

  26. Hsiao JM, Shieh CJ (2006) Evaluating the value of information sharing in a supply chain using an ARIMA model. Int J Adv Manuf Technol 27:604–609

    Article  Google Scholar 

  27. Jaipuria S, Mahapatra S (2014) An improved demand forecasting method to reduce bullwhip effect in supply chains. Expert Syst Appl 41:2395–2408

    Article  Google Scholar 

  28. Kahn J (1987) Inventories and the volatility of production. Am Econ Rev 77:667–679

    Google Scholar 

  29. Lee H, Padmanabhan P, Whang S (1997a) The bullwhip effect in supply chains. Sloan Manag Rev 38:93–102

    Google Scholar 

  30. Li Q, Disney SM, Gaalman G (2014) Avoiding the bullwhip effect using damped trend forecasting and the Order-Up-To replenishment policy. Int J Prod Econ 149:3–16

    Article  Google Scholar 

  31. Luong TH (2007) Measure of bullwhip effect in supply chains with autoregressive demand process. Eur J Oper Res 180:1086–1097

    Article  Google Scholar 

  32. Luong HT, Phien NH (2007) Measure of bullwhip effect in supply chains: the case of high order autoregressive demand process. Eur J Oper Res 183:197–209

    Article  Google Scholar 

  33. Paik SK, Bagchi PK (2007) Understanding the causes of the bullwhip effect in a supply chain. Int J Retail Distrib Manag 35(2):308–324

    Article  Google Scholar 

  34. Pindyck RS, Rubinfeld DL (1998) Econometric models and economic forecasts, 4th edn. Irwin McGraw-Hill, New York

    Google Scholar 

  35. Zhang X (2004) The impact of forecasting methods on the bullwhip effect. Int J Prod Econ 88:15–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abbas Shojaie.

Appendices

Appendix 1

$$\begin{aligned} \hbox {cov}(d_{t-1} ,\varepsilon _{t-1} )= & {} E(d_{t-1} \cdot \varepsilon _{t-1} )-E(d_{t-1} )E(\varepsilon _{t-1} ) \\= & {} E(d_{t-1} \cdot \varepsilon _{t-1} ) \\= & {} E((\delta +\phi d_{t-2} +\varepsilon _{t-1} -\theta \varepsilon _{t-2} )\cdot \varepsilon _{t-1} ) \\= & {} \delta E(\varepsilon _{t-1} ) +\phi E(d_{t-2} \cdot \varepsilon _{t-1} )+E(\varepsilon _{t-1}^{2} )-\theta E(\varepsilon _{t-2} \cdot \varepsilon _{t-1} ) \\= & {} E(\varepsilon _{t-1}^{2} )=\hbox {var}(\varepsilon _{t} )=\frac{c_{0} }{1-\alpha -\beta } \\ E(d_{t-2} \cdot \varepsilon _{t-1} )= & {} E(E(d_{t-2} \cdot \varepsilon _{t-1} \vert \psi _{t-2} )) \\= & {} E(d_{t-2} E(\varepsilon _{t-1} \vert \psi _{t-2} )) \\= & {} 0 \end{aligned}$$

Appendix 2

$$\begin{aligned} d_{t+i}= & {} \delta +\phi d_{t+i-1} +\varepsilon _{t+i} -\theta \varepsilon _{t+i-1} \\= & {} \delta +\phi (\delta +\phi d_{t+i-2} +\varepsilon _{t+i-1} -\theta \varepsilon _{t+i-2} )+\varepsilon _{t+i} -\theta \varepsilon _{t+i-1} \\= & {} \delta +\phi (\delta +\phi (\delta +\phi d_{t+i-3} +\varepsilon _{t+i-2} -\theta \varepsilon _{t+i-3} )+\varepsilon _{t+i-1} -\theta \varepsilon _{t+i-2} )\\&\quad +\,\varepsilon _{t+i} -\theta \varepsilon _{t+i-1} \\&\quad \quad \quad \vdots \\= & {} (1+\phi +\phi ^{2}\cdots +\phi ^{i-1})\delta +\phi ^{i}d_{t} +\varepsilon _{t+i} +(\phi -\theta )\varepsilon _{t+i-1} \\&\quad +\,\phi (\phi -\theta )\varepsilon _{t+i-2} +\cdots -\phi ^{i-1}\theta \varepsilon _{t} \\ \end{aligned}$$

According to Pindyck and Rubinfeld [34], for the ARMA(1,1) process, \(\hat{{d}}_{t} \) can be determined as

$$\begin{aligned} \hat{{d}}_{t+i}= & {} E(d_{t+i} \vert \psi _{t} ) \\= & {} E((1+\phi +\phi ^{2}\cdots +\phi ^{i-1})\delta +\phi ^{i}d_{t} +\varepsilon _{t+i} +(\phi -\theta )\varepsilon _{t+i-1} \\&+\,\phi (\phi -\theta )\varepsilon _{t+i-2} +\cdots +\phi ^{i-2}(\phi -\theta )\varepsilon _{t+1} -\phi ^{i-1}\theta \varepsilon _{t} )\vert \psi _{t} ) \\= & {} (1+\phi +\phi ^{2}\cdots +\phi ^{i-1})\delta +\phi ^{i}d_{t} -\phi ^{i-1}\theta \varepsilon _{t} \\= & {} \delta \frac{(1-\phi ^{i})}{\left( {1-\phi } \right) }+\phi ^{i}d_{t} -\phi ^{i-1}\theta \varepsilon _{t} \\= & {} \frac{\delta }{\left( {1-\phi } \right) }(1-\phi ^{i})+\phi ^{i}d_{t} -\phi ^{i-1}\theta \varepsilon _{t} \\= & {} \mu _{d} +\phi ^{i}\left( {d_{t-1} -\mu _{d} } \right) -\phi ^{i-1}\theta \varepsilon _{t} \end{aligned}$$

Because \(E(d_{t} \vert \psi _{t} )=d_{t} \), \(E(\varepsilon _{t} \vert \psi _{t} )=\varepsilon _{t} \) and \(E(\varepsilon _{t+i} \vert \psi _{t} )=0 , {\forall i>0}\)

Appendix 3

$$\begin{aligned} \left\{ \begin{array}{l} q_{t} = S_{t} - S_{{t - 1}} + d_{{t - 1}} \\ S_{t} = \hat{d}_{t}^{L} + z\hat{\sigma }_{t}^{L}\\ \end{array}\right. \Rightarrow q_{t}= & {} (\hat{d}_{t}^{L} + z\hat{\sigma }_{t}^{L} ) - (\hat{d}_{{t - 1}}^{L} + z\hat{\sigma }_{{t - 1}}^{L} ) +d_{{t - 1}}\\= & {} \hat{d}_{t}^{L} - \hat{d}_{{t - 1}}^{L} + d_{{t - 1}} \end{aligned}$$
$$\begin{aligned}= & {} \left( {L\mu _{d} + \frac{{\left( {1 - \phi ^{L} } \right) }}{{(1 - \phi )}}(d_{t} - \mu _{d} ) - \frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi (1 - \phi )}}\varepsilon _{t} } \right) \\&- \left( {L\mu _{d} + \frac{{\left( {1 - \phi ^{L} } \right) }}{{(1 - \phi )}}(d_{{t - 1}} - \mu _{d} ) - \frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi (1 - \phi )}}\varepsilon _{{t - 1}} } \right) + d_{{t - 1}} \\= & {} \frac{{\left( {1 - \phi ^{L} } \right) }}{{(1 - \phi )}}d_{t} - \frac{{\left( {1 - \phi ^{L} } \right) }}{{(1 - \phi )}}d_{{t - 1}} + d_{{t - 1}} - \frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi (1 - \phi )}}\varepsilon _{t} + \frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi (1 - \phi )}}\varepsilon _{{t - 1}} \\= & {} \frac{{1 - \phi ^{L} }}{{1 - \phi }}d_{t} - \frac{{\phi \left( {1 - \phi ^{{L - 1}} } \right) }}{{(1 - \phi )}}d_{{t - 1}} - \frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi (1 - \phi )}}\varepsilon _{t} + \frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi (1 - \phi )}}\varepsilon _{{t - 1}} \\ \text {var} (q_{{t + i}} |\psi _{t} )= & {} \text {var} \left( {\frac{{1 - \phi ^{L} }}{{1 - \phi }}d_{{t + i}} - \frac{{\phi \left( {1 - \phi ^{{L - 1}} } \right) }}{{(1 - \phi )}}d_{{t + i - 1}} - \frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi (1 - \phi )}}\varepsilon _{{t + i}} + \frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi (1 - \phi )}}\varepsilon _{{t + i - 1}} |\psi _{t} } \right) \\= & {} \left( {\frac{{1 - \phi ^{L} }}{{1 - \phi }}} \right) ^{2} \text {var} (d_{{t + i}} |\psi _{t} ) + \left( {\frac{{\phi \left( {1 - \phi ^{{L - 1}} } \right) }}{{(1 - \phi )}}} \right) ^{2} \text {var} (d_{{t + i - 1}} |\psi _{t} ) + \left( {\frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi (1 - \phi )}}} \right) ^{2} \\&\qquad \text {var} (\varepsilon _{{t + i}} |\psi _{t} ) + \left( {\frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi (1 - \phi )}}} \right) ^{2} \text {var} (\varepsilon _{{t + i - 1}} |\psi _{t} ) \\&-\, 2\frac{{\phi \left( {1 - \phi ^{{L - 1}} } \right) \left( {1 - \phi ^{L} } \right) }}{{\left( {1 - \phi } \right) ^{2} }}\text {cov} (d_{{t + i}} ,d_{{t + i - 1}} |\psi _{t} ) \\&-\, 2\frac{{\theta \left( {1 - \phi ^{L} } \right) ^{2} }}{{\phi (1 - \phi )^{2} }}\text {cov} (d_{{t + i}} ,\varepsilon _{{t + i}} |\psi _{t} ) \\&+\,2\frac{{\theta \left( {1 - \phi ^{L} } \right) \left( {1 - \phi ^{{L - 1}} } \right) }}{{(1 - \phi )^{2} }}\text {cov} (d_{{t + i - 1}} ,\varepsilon _{{t + i - 1}} |\psi _{t} ) \\&+\, 2\frac{{\theta \left( {1 - \phi ^{L} } \right) ^{2} }}{{\phi (1 - \phi )^{2} }}\text {cov} (d_{{t + i}} ,\varepsilon _{{t + i - 1}} |\psi _{t} ) \\&+\, 2\frac{{\theta \left( {1 - \phi ^{L} } \right) \left( {1 - \phi ^{{L - 1}} } \right) }}{{(1 - \phi )^{2} }}\text {cov} (d_{{t + i - 1}} ,\varepsilon _{{t + i}} |\psi _{t} ) \\= & {} \left( {\frac{{1 - \phi ^{L} }}{{1 - \phi }}} \right) ^{2} \text {var} (d_{{t + i}} |\psi _{t} ) + \frac{{\phi ^{2} \left( {1 - \phi ^{{L - 1}} } \right) }}{{(1 - \phi )^{2} }}(3 - \phi ^{{L - 1}} - 2\phi ^{L} )\\&\qquad \text {var} (d_{{t + i - 1}} |\psi _{t} ) + \frac{{\theta \left( {1 - \phi ^{L} } \right) ^{2} }}{{\phi ^{2} (1 - \phi )^{2} }}\left[ {\theta - 2\phi } \right] \text {var} (\varepsilon _{{t + i}} |\psi _{t} ) \\&+ \frac{{\theta \left( {1 - \phi ^{L} } \right) }}{{\phi ^{2} (1 - \phi )^{2} }}\left[ {\theta \left( {1 - \phi ^{L} } \right) \left( {1 - 2\phi } \right) + 2\phi ^{2} \left( {2 - \phi ^{L} - \phi ^{{L - 1}} } \right) } \right] \text {var} (\varepsilon _{{t + i - 1}} |\psi _{t} ) \end{aligned}$$

Because

$$\begin{aligned} \hbox {cov}(d_{t+i} ,d_{t+i-1} \vert \psi _{t} )= & {} \hbox {cov}(\delta +\phi d_{t+i-1} +\varepsilon _{t+i} -\theta \varepsilon _{t+i-1} ,d_{t+i-1} \vert \psi _{t} ) \\= & {} \hbox {cov}(\delta ,d_{t+i-1} \vert \psi _{t} )+\phi \hbox {var}(d_{t+i-1} \vert \psi _{t} )+\hbox {cov}(\varepsilon _{t+i} ,d_{t+i-1} \vert \psi _{t} )\\&-\,\theta \hbox {cov}(\varepsilon _{t+i-1} ,d_{t+i-1} \vert \psi _{t} ) \\= & {} \phi \hbox {var}(d_{t+i-1} \vert \psi _{t} )-\theta \hbox {var}(\varepsilon _{t+i-1} \psi _{t} ) \\ \hbox {cov}(d_{t+i} ,\varepsilon _{t+i} \vert \psi _{t} )= & {} \hbox {cov}(\delta +\phi d_{t+i-1} +\varepsilon _{t+i} -\theta \varepsilon _{t+i-1} ,\varepsilon _{t+i} \vert \psi _{t} ) \\= & {} \hbox {cov}(\delta ,\varepsilon _{t+i} \vert \psi _{t} )+\phi \hbox {cov}(d_{t+i-1} ,\varepsilon _{t+i} \vert \psi _{t} )+\hbox {var}(\varepsilon _{t+i} \vert \psi _{t} )\\&-\,\theta \hbox {cov}(\varepsilon _{t+i} ,\varepsilon _{t+i-1} \vert \psi _{t} ) \\= & {} \hbox {var}(\varepsilon _{t+i} \vert \psi _{t} ) \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadizadeh, R., Shojaie, A.A. A Measure of SCM Bullwhip Effect Under Mixed Autoregressive-Moving Average with Errors Heteroscedasticity (ARMA(1,1)–GARCH(1,1)) Model. Ann. Data. Sci. 4, 83–104 (2017). https://doi.org/10.1007/s40745-016-0097-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-016-0097-5

Keywords

Navigation