Skip to main content
Log in

A generalized measure of bullwhip effect in supply chain with ARMA demand process under various replenishment policies

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The measure of bullwhip effect (BWE) has always been a challenging task to the researchers. BWE is one of the main performance measures for a supply chain. In the existing literature, the measurement of BWE has been performed based on the simple demand processes such as Moving Average, AR(1) (AutoRegression), AR(2), Exponential Smoothing and ARMA(1,1) (AutoRegressive Moving Average). In this paper, we have derived generalized expressions of BWE based on the generalized ARMA (p,q) demand process under the various replenishment policies. The expressions have been compared both algebraically and numerically in order to find out the appropriate replenishment policy that leads to minimum valued expression for BWE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiaolong Z (2004) The impact of forecasting methods on the bullwhip effect. Int J Prod Econ 88(1):15–27

    Article  Google Scholar 

  2. Lee HL, Padmanabhan V, Whang S (1997) The bullwhip effect in supply chains. Sloan Manag Rev 38:93–102

    Google Scholar 

  3. Lee HL, Padmanabhan V, Whan S (2004) Information distortion in a supply chain: the bullwhip effect. Manag Sci 50(12):1875–1886

    Article  Google Scholar 

  4. Chen F, Drezner Z, Ryan JK, Simchi-Levi D (2000) Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information. Manag Sci 46(3):436–443

    Article  MATH  Google Scholar 

  5. Chen F, Drezner Z, Ryan JK, Simchi-Levi D (2000) The impact of exponential smoothing forecasts on the bullwhip effect. Nav Res Logist 47(4):269–286

    Article  MATH  Google Scholar 

  6. Hosoda T, Disney SM (2004) An analysis of a three echelon supply chain model with minimum mean squared error forecasting. Second World Production and Operations Management Conference, Cancun, Mexico, April 30–May 3, 2004. pp. 1–24

  7. Gerard G, Disney SM (2006) State space investigation of the bullwhip problem with ARMA(1,1) demand processes. Int J Prod Econ 104(2):327–339

    Article  Google Scholar 

  8. Ben-Daya M, Abdul R (1994) Inventory models involving lead time as a decision variable. J Oper Res Soc 45(5):579–582

    MATH  Google Scholar 

  9. Heydari J, Baradaran Kazemzadeh R, Kamal Chaharsooghi S (2009) A study of lead time variation impact on supply chain performance. Int J Adv Manuf Technol 40(11–12):1206–1215

    Article  Google Scholar 

  10. Ryu SW, Lee KK (2003) A stochastic inventory model of dual sourced supply chain with lead-time reduction. Int J Prod Econ 81–82:513–524

    Article  Google Scholar 

  11. Huang L, Liu Y (2008) Supply chain dynamics under the sustainable development. 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008 (WiCOM 2008), Dalian, 12–14 October 2008, pp. 1–6

  12. Ranjan B, Susmita B (2011) A review of the causes of bullwhip effect in a supply chain. Int J Adv Manuf Technol 54(9–12):1245–1261

    Google Scholar 

  13. Hien DTT, Trung LH, Yeong-Dae K (2007) A measure of the bullwhip effect in supply chains with stochastic lead time. Int J Adv Manuf Technol 38(11–12):1201–1212

    Google Scholar 

  14. Trung LH (2007) Measure of bullwhip effect in supply chains with autoregressive demand process. Eur J Oper Res 180(3):1086–1097

    Article  MATH  Google Scholar 

  15. Issam D, Habib C (2007) Nonlinear goal programming models quantifying the bullwhip effect in supply chain based on ARIMA parameters. Eur J Oper Res 177(3):1800–1810

    Article  MATH  Google Scholar 

  16. Hien DTT, Trung LH, Yeong-Dae K (2008) A measure of the bullwhip effect in supply chains with a mixed autoregressive-moving average demand process. Eur J Oper Res 187(1):243–256

    Article  MATH  Google Scholar 

  17. Kim JG, Dean C, Harrison TP, Hayya JC (2006) Quantifying the bullwhip effect in a supply chain with stochastic lead time. Eur J Oper Res 173(2):617–636

    Article  MATH  Google Scholar 

  18. Trung LH, Huu PN (2007) Measure of bullwhip effect in supply chains: the case of high order autoregressive demand process. Eur J Oper Res 183(1):197–209

    Article  MATH  Google Scholar 

  19. Fioriolli JC, Fogliatto FS (2008) A model to quantify the Bullwhip effect in Systems with Stochastic Demand and Lead Time; 2008 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 8–11 December 2008. pp. 1098–1102

  20. Wang PP, Kara S, Kayis B (2007) A simulation model of bullwhip effect in a multi-stage supply chain. 2007 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2–4 December 2007, pp. 1853–1857

  21. Eric S (2009) The bullwhip effect in supply chains—an overestimated problem? Int J Prod Econ 118(1):311–322

    Article  Google Scholar 

  22. Siajadi H, Ibrahim RN, Lochert PB, Chan WM (2005) Joint replenishment policy in inventory production systems. Prod Plan Control 16(3):255–262

    Article  Google Scholar 

  23. Xiuli C, Hong C, Shaohui Z (2008) Joint replenishment and pricing decisions in inventory systems with stochastically dependent supply capacity. Eur J Oper Res 191(1):140–153

    Google Scholar 

  24. Hay LL, Peng CE (2005) A dynamic joint replenishment policy with auto-correlated demand. Eur J Oper Res 165(3):729–747

    Article  MATH  Google Scholar 

  25. Mustafa TM, Alper Ş, Osman A (2010) A joint replenishment policy with individual control and constant size orders. Int J Prod Res 48(14):4253–4271

    Article  MATH  Google Scholar 

  26. Christina N, Christian L (2005) An analytical study of the Q(s, S) policy applied to the joint replenishment problem. Eur J Oper Res 163(3):721–732

    Article  MATH  Google Scholar 

  27. Philip M (2002) Calculating can-order policies for the joint replenishment problem by the compensation approach. Eur J Oper Res 141(3):587–595

    Article  MATH  Google Scholar 

  28. Lee HT, Liu ZM (2010) Statistical inventory management in two-echelon, multiple-retailer supply chain systems. J Int Manag Stud 5(1):172–177

    Google Scholar 

  29. Goyal SK, Hariga MA, Alyan A (1996) The trended inventory lot sizing problem with shortages under a new replenishment policy. J Oper Res Soc 47(10):1286–1295

    MATH  Google Scholar 

  30. Roberto R, Armagan TS, Brahim H, Steven P (2011) A state space augmentation algorithm for the replenishment cycle inventory policy. Int J Prod Econ 133(1):377–384

    Article  Google Scholar 

  31. Feng Y, Sun J (2001) Computing the optimal replenishment policy for inventory systems with random discount opportunities. Oper Res 49(5):790–795

    Article  MathSciNet  MATH  Google Scholar 

  32. Henery RJ (1979) Inventory replenishment policy for increasing demand. J Oper Res Soc 30(7):611–617

    MathSciNet  MATH  Google Scholar 

  33. Roberto R, Armagan TS, Brahim H, Steven P (2010) Computing the non-stationary replenishment cycle inventory policy under stochastic supplier lead-times. Int J Prod Econ 127(1):180–189

    Article  Google Scholar 

  34. Yang W, Feng Y (2009) The optimal replenishment policies under vmi system with multi-retailer and multi-period random demand. 2009 International Conference on Information Management, Innovation Management and Industrial Engineering, 26–27 December 2009, Xian, China, pp. 258–261

  35. KiesmÜller GP (2009) A multi-item periodic replenishment policy with full truckloads. Int J Prod Econ 118:275–281

    Article  Google Scholar 

  36. Ramirez Cerda CB, Espinosa de los Monteros AJF (1997) Evaluation of a (R,s,Q,c) multi-item inventory replenishment policy through simulation. Proceedings of the 1997 Winter Simulation Conference

  37. Marko J, Borut R (2008) The effect of replenishment policies on the bullwhip effect: a transfer function approach. Eur J Oper Res 184(3):946–961

    Article  MATH  Google Scholar 

  38. Wang C (2008) Quantitative analysis on the bullwhip effect in a supply chain using double moving average and double exponential smoothing forecasts. International Symposiums on Information Processing, 23–25 May, Moscow, pp. 114–118

  39. Brockwell PJ, Davis RA (2002) Introduction to time series and forecasting, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Bandyopadhyay.

Appendices

Appendix 1

For ARMA (1,1), the demand for period t is:

$$ {D_t}=\delta +\phi {D_t}_{-1 }+{\varepsilon_t}-\theta {\varepsilon_t}_{-1 } $$
(i)

The demand for period (t + 1) is,

$$ \begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{D_t}_{+1 }=\delta +\phi {D_t}+{\varepsilon_t}_{+1 }-\theta {\varepsilon_t}} \\ {=\delta +\phi \delta +{\phi^2}{D_{t-1 }}+\phi {\varepsilon_t}-\phi \theta {\varepsilon_{t-1 }}+{\varepsilon_{t+1 }}-\theta {\varepsilon_t}} \\ {=\left( {1+\phi } \right)\delta +{\phi^2}Dt-1+{\varepsilon_{t+1 }}+\left( {\phi -\theta } \right){\varepsilon_t}-\phi \theta {\varepsilon_{t-1 }}} \\ \end{array}} & {\left[ {\mathrm{Substituting}\;\left( \mathrm{i} \right)} \right]} \\ \end{array}} \\ \end{array} $$

Similarly, the demand for period (t + 2) is:

$$ {D_t}_{+2 }=\left( {1+\phi +{\phi^2}} \right)\delta +{\phi^3}{D_t}_{+1 }+{\varepsilon_{t+2 }}-\left( {\phi -\theta } \right){\varepsilon_{t+1 }}-\phi \left( {\phi -\theta } \right){\varepsilon_t}-{\phi^2}\theta {\varepsilon_{t-1 }} $$
(ii)

Similarly, the demand for period (t + i) is:

$$ \begin{array}{*{20}c} {{D_t}_{+1 }=\left( {1+\phi +{\phi^2}+\ldots +{\phi^i}} \right)\delta +{\phi^{i+1 }}{D_{t-1 }}} \\ {\quad \quad \quad \quad \quad \quad + {\varepsilon_{t+i }}-\left( {\phi -\theta } \right){\varepsilon_{t+i-1 }}-\phi \left( {\phi -\theta } \right){\varepsilon_{t+i-2 }}\ldots -{\phi^i}\theta {\varepsilon_t}_{-1 }} \\ \end{array} $$
(iii)

Thus, the mean demand is given by,

$$ {{\hat{D}}_{{t + 1}}} = \left( {1 + \phi + {{\phi }^{2}} + \ldots + {{\phi }^{i}}} \right)\delta + {{\phi }^{{i + 1}}}{{D}_{{t - 1}}} $$
(iv)

(Since the mean of error variable terms are zero)

Appendix 2

Proceeding in the same way as in Appendix 1, i.e. substituting the expression for demand D t in the expression for demand D t + 1, then substituting the expression for demand D t + 1 in the expression for demand D t + 2 and so on we get the following expressions.

Demand at period t is:

$$ {D_t}=\delta +{\phi_1}{D_t}_{-1 }+{\phi_2}{D_t}_{-2 }+{\varepsilon_t}-\theta {\varepsilon_t}_{-1 } $$
(i)

Substituting (i) in the expression for D t + 1 we get,

$$ {D_{t+1 }}=\left( {1+{\phi_1}} \right)\delta +{\phi_1}{\phi_2}{D_{t-2 }}+{\phi_2}{D_{t-1 }}+\phi_1^2{D_{t-1 }}+{\varepsilon_{t+1 }}-\left( {\phi -\theta } \right){\varepsilon_t}-{\phi_1}\theta {\varepsilon_{t+1 }} $$
(ii)

Substituting (ii) in the expression for D t + 2 we get,

$$ \begin{array}{*{20}c} {{D_{t+2 }}=\left( {1+{\phi_1}+\phi_1^2} \right)\delta +\phi_1^2{\phi_2}{D_{t-2 }}+{\phi_1}{\phi_2}{D_{t-1 }}+{\phi_2}{D_t}+\phi_1^3{D_{t-1 }}} \\ {\quad \quad \quad \quad \quad \quad \quad \quad +{\varepsilon_{t+2 }}-\left( {{\phi_1}-\theta } \right){\varepsilon_{t+1 }}-{\phi_1}\left( {{\phi_1}-\theta } \right){\varepsilon_t}-\phi_1^2\theta {\varepsilon_{t-1 }}} \\ \end{array} $$
(iii)

Thus, the generalized expression for demand at period (t + i) is given by,

$$ \begin{array}{*{20}c} {{D_{{t+\mathrm{i}}}}=\left( {1+\phi +{\phi^2}+\ldots +{\phi^i}} \right)\delta +{\phi_2}\sum\limits_{j=2}^{i+2 } {\phi_1^{j-2 }} {D_{t+i}}_{-j }+{\phi^{i+1 }}{D_{t-1 }}} \\ {\quad \quad \quad \quad \quad +{\varepsilon_{t+i }}-\left( {\phi -\theta } \right){\varepsilon_{t+i-1 }}-\phi \left( {\phi -\theta } \right){\varepsilon_{t+i-2 }}\ldots -{\phi^i}\theta {\varepsilon_{t-1 }}} \\ \end{array} $$
(iv)

Thus, the expression for mean demand is,

$$ {{\widehat{D}}_{t+2 }}=\left( {1+{\phi_1}+\phi_1^2+\ldots +\phi_1^i} \right)\delta +{\phi_2}\sum\limits_{j=2}^{i+2 } {\phi_1^{j-2 }} {D_{{t+\mathrm{i}}}}_{-j }+{\phi^{i+1 }}{D_{t-1 }} $$
(v)

(Since the mean of error variable terms is zero and ε t-1 is a constant term)

Appendix 3

Now we can derive the following expressions

$$ \begin{array}{*{20}c} {\sum\limits_{i=0}^{L-1 } {\left( {1-{\phi_1}^{i+1 }} \right)} } \\ {=\left( {1-{\phi_1}} \right)+\left( {1-{\phi_1}^2} \right)+\left( {1-{\phi_1}^3} \right)+\ldots +\left( {1-{\phi_1}^L} \right)} \\ {=(1+1+1+\ldots Lterms)-{\phi_1}\left( {1+{\phi_1}+{\phi_1}^2+\ldots +{\phi_1}{{{^L}}^{-1 }}} \right)} \\ {=\left( {L-{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)} \\ \end{array} $$
(i)
$$ \begin{array}{*{20}c} {\sum\limits_{i=0}^{L-1 } {{\phi_1}^{i+1 }{D_{t-1 }}} } \\ {={D_{t-1 }}\left[ {{\phi_1}+{\phi_1}^2+\ldots +{\phi_1}^L} \right]} \\ {={D_{t-1 }}{\phi_1}\left( {1+{\phi_1}+{\phi_1}^2+\ldots +{\phi_1}{{{^L}}^{-1 }}} \right)} \\ {=\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-1 }}} \\ \end{array} $$
(ii)
$$ \begin{array}{*{20}c} {\sum\limits_{i=0}^{L-1 } {\sum\limits_{k=2}^p {{\phi_k}\sum\limits_{j=k}^{i+k } {\phi_1^{j-k }} } } {D_{t+i}}_{-j }} \\ {=\sum\limits_{k=2}^p {{\phi_k}} \left[ {\sum\limits_{j=k}^k {\phi_1^{j-k }{D_t}_{-j }+} \sum\limits_{j=k}^{k+1 } {\phi_1^{j-k }{D_t}{{{_{-j}}}_{+1 }}+} \sum\limits_{j=k}^{k+2 } {\phi_1^{j-k }{D_t}{{{_{-j}}}_{+2 }}+} \ldots +\sum\limits_{j=k}^{k+L-1 } {\phi_1^{j-k }{D_t}{{{_{-j}}}_{+L-1 }}} } \right]} \\ {=\sum\limits_{k=2}^p {{\phi_k}} \left[ {{D_t}_{-k }+{D_t}_{-k+1 }+{\phi_1}{D_t}_{-k }+{D_t}_{-k+2 }+{\phi_1}{D_t}_{-k+1 }+\phi_1^2{D_t}_{-k }+\ldots +{D_t}{{{_{-k}}}_{+L-1 }}+{\phi_1}{D_t}{{{_{-k}}}_{+L-2 }}+\phi_1^2{D_t}{{{_{-k}}}_{+L-3 }}+\ldots +\phi_1^{L-1 }{D_t}_{-k }} \right]} \\ {=\sum\limits_{k=2}^p {{\phi_k}} \left[ {{D_t}_{-k}\left( {1+{\phi_1}+\phi_1^2+\ldots +\phi_1^{L-1 }} \right)+{D_t}{{{_{-k}}}_{+1 }}\left( {1+{\phi_1}+\phi_1^2+\ldots +\phi_1^{L-2 }} \right)+{D_t}{{{_{-k}}}_{+2 }}\left( {1+{\phi_1}+\phi_1^2+\ldots +\phi_1^{L-3 }} \right)+....+{D_t}{{{_{-k}}}_{+L-1 }}} \right]} \\ {=\sum\limits_{k=2}^p {{\phi_k}} \left[ {{D_t}_{-k}\frac{{\left( {1-\phi_1^L} \right)}}{{\left( {1-{\phi_1}} \right)}}+{D_t}_{-k+1}\frac{{\left( {1-\phi_1^{L-1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}+{D_t}_{-k+2}\frac{{(1-\phi_1^{L-2 })}}{{(1-{\phi_1})}}+\ldots +{D_t}_{-k+L-1}\frac{{\left( {1-{\phi_1}} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right]} \\ {=\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \left[ {{D_t}_{-k}\left( {1-\phi_1^L} \right)+{D_t}{{{_{-k}}}_{+1 }}\left( {1-\phi_1^{L-1 }} \right)+{D_t}{{{_{-k}}}_{+2 }}\left( {1-\phi_1^{L-2 }} \right)+\ldots +{D_t}{{{_{-k}}}_{+L}}_{-1}\left( {1-\phi_1^{{L-\left( {L-1} \right)}}} \right)} \right]} \\ {=\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_t}_{-k+j}\left( {1-\phi_1^{L-j }} \right)} } \\ \end{array} $$
(iii)

Thus, \( \widehat{D}_t^L \)

$$ \begin{array}{*{20}c} {=\sum\limits_{i=0}^{L-1 } {\left[ {\frac{{\left( {1-\phi_1^{i+1 }} \right)\left( {1-\sum\limits_{j=1}^p {{\phi_j}} } \right)}}{{\left( {1-{\phi_1}} \right)}}+\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=k}^{i+k } {\phi_1^{j-k }} {D_{t+i}}_{-j }+{\phi^{i+1 }}{D_{t-1 }}} \right]} } \\ {=\frac{{{\mu_d}\left( {1-\sum\limits_{j=1}^p {{\phi_j}} } \right)}}{{\left( {1-{\phi_1}} \right)}}\left( {L-{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)+\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-1 }}} \\ {+\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j}\left( {1-\phi_1^{L-j }} \right)} } \\ \end{array} $$

Appendix 4

4.1 Calculation of variance of lead time demand forecast error

By definition, the variance is given by,

$$ {{\left( {{{\widehat{\sigma}}_t}^L} \right)}^2}=\mathrm{VAR}\left( {{D_t}^L-{{\widehat{D}}_t}^L} \right) $$
(11)

Where,

$$ \begin{array}{*{20}{c}} {{{D}_{t}}^{L} - {{{\hat{D}}}_{t}}^{L} = \left( {{{D}_{t}} - {{{\hat{D}}}_{t}}} \right) + \left( {{{D}_{t}} + 1 - {{{\hat{D}}}_{{t + 1}}}} \right) + \ldots + \left( {{{D}_{{t + L - 1}}} - \widehat{{{{D}_{t}}_{{ + L - 1}}}}} \right)} \\ { = \left( {{{e}_{t}} + {{e}_{{t + 1}}} + \ldots + {{e}_{{t + L - 1}}}} \right) = \sum\limits_{{i = 0}}^{{L - 1}} {{{e}_{{t + i}}}} } \\\end{array} $$

Thus,

$$ \begin{array}{*{20}c} {{e_{t+i }}={D_{t+i }}-{{\widehat{D}}_{t+i }}} \hfill \\ {={\varepsilon_{t+i }}+\left( {{\phi_1}-{\theta_1}} \right){\varepsilon_{t+i-1 }}+\left( {\phi_1^2-\phi 1{\theta_1}-{\theta_2}} \right){\varepsilon_{t+i-2 }}+\left( {\phi_1^3-\phi_1^2{\theta_1}-\phi 1{\theta_2}-{\theta_3}} \right){\varepsilon_{t+i-3 }}+\ldots } \hfill \\ \end{array} $$

Thus,

$$ \begin{array}{*{20}c} {{{{\left( {{{\widehat{\sigma}}_t}^L} \right)}}^2}=\mathrm{VAR}\left( {{D_t}^L-{{\widehat{D}}_t}^L} \right)} \hfill \\ {=\mathrm{VAR}\left( {{\varepsilon_{t+i }}+\left( {{\phi_1}-{\theta_1}} \right){\varepsilon_{t+i-1 }}+\left( {\phi_1^2-{\phi_1}{\theta_1}-{\theta_2}} \right){\varepsilon_{t+i-2 }}+\left( {\phi_1^3-\phi_1^2{\theta_1}-\phi 1{\theta_2}-{\theta_3}} \right){\varepsilon_{t+i-3 }}+\ldots } \right)} \hfill \\ {={\sigma^2}\left[ {1+\left( {{\phi_1}-{\theta_1}} \right)+\left( {\phi_1^2-{\phi_1}{\theta_1}-{\theta_2}} \right)+\left( {\phi_1^3-\phi_1^2{\theta_1}-{\phi_1}{\theta_2}-{\theta_3}} \right)+\ldots } \right]} \hfill \\ \end{array} $$
(12)

This is a constant, independent of time t.

Having found both \( {{\widehat{\sigma}}_t}^L \) and \( {{\widehat{D}}_t}^L \), we can now find the expression for order quantity various replenishment policies.

Appendix 5

$$ \begin{array}{*{20}c} {{q_t}={S_t}-{S_{t-1 }}+{D_{t-1 }}=\widehat{{{D_t}^L}}-\widehat{{{D_{t-1}}^L}}+{D_{t-1 }}} \\ {=\left[ {\frac{{{\mu_d}\left( {1-\sum\limits_{j=1}^p {{\phi_j}} } \right)}}{{\left( {1-{\phi_1}} \right)}}\left( {L-{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)+\frac{{{\phi_1}\left( {1-\phi {1^L}} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-1 }}+\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j}\left( {1-\phi_1^{L-j }} \right)} } \right]} \\ {-\left[ {\frac{{{\mu_d}\left( {1-\sum\limits_{j=1}^p {{\phi_j}} } \right)}}{{\left( {1-{\phi_1}} \right)}}\left( {L-{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)+\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-2 }}+\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j-1}\left( {1-\phi_1^{L-j }} \right)} } \right]} \\ {\quad \quad \quad \quad +{D_{t-1 }}} \\ {=\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-1 }}-\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-2 }}+\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j}\left( {1-\phi_1^{L-j }} \right)} } \\ {-\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j-1}\left( {1-\phi_1^{L-j }} \right)} } \\ \end{array} $$
(i)

Thus, the required variance of order quantity:

$$ \begin{array}{*{20}c} {\mathrm{VAR}\left( {{q_t}} \right)} \\ {=\mathrm{VAR}\left( {\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-1 }}} \right)+\mathrm{VAR}\left( {\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-2 }}} \right)} \\ {+\mathrm{VAR}\left( {\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j}\left( {1-\phi_1^{L-j }} \right)} } \right)} \\ {+\mathrm{VAR}\left( {\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j-1 }(1-\phi_1^{L-j })} } \right)} \\ {-2\mathrm{COV}\left( {\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-1 }},\frac{{{\phi_1}\left( {1-\phi {1^L}} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-2 }}} \right)} \\ {+2\mathrm{COV}\left( {\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-1 }},\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j }(1-\phi_1^{L-j })} } \right)} \\ {-2\mathrm{COV}\left( {\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-1 }},\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j-1}\left( {1-\phi_1^{L-j }} \right)} } \right)} \\ {-2\mathrm{COV}\left( {\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-2 }},\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j}\left( {1-\phi_1^{L-j }} \right)} } \right)} \\ {+2\mathrm{COV}\left( {\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-2 }},\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j-1}\left( {1-\phi_1^{L-j }} \right)} } \right)} \\ {-2\mathrm{COV}\left( {\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j}\left( {1-\phi_1^{L-j }} \right)}, \frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j-1}\left( {1-\phi_1^{L-j }} \right)} } \right)} \\ \end{array} $$
(ii)

Treating individual terms of expression (ii), we get the following expressions.

$$ \mathrm{VAR}\left( {\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-1 }}} \right)={{\left( {\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)}^{{^2}}}\sigma_d^2 $$
(iii)
$$ \mathrm{VAR}\left( {\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-2 }}} \right)={{\left( {\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)}^{{^2}}}\sigma_d^2 $$
(iv)
$$ \begin{array}{*{20}c} {\mathrm{VAR}\left( {\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j}\left( {1-\phi_1^{L-j }} \right)} } \right)} \hfill \\ {\quad =\frac{1}{{{{{\left( {1-{\phi_1}} \right)}}^2}}}\sum\limits_{k=2}^p {\phi_k^2} \left[ {L-2{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}+\frac{{\phi {1^2}\left( {1-{\phi_1}^{2L }} \right)}}{{\left( {1-\phi_1^2} \right)}}} \right]\mathrm{VAR}\left( {\sum\limits_{k=2}^p {\sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j }} } } \right)} \hfill \\ \end{array} $$

[Since,

$$ \begin{array}{*{20}c} {\sum\limits_{j=0}^{L-1 } {\left( {1-\phi_1^{L-j }} \right)} =L-2{\phi_1}\frac{{\left( {1-\phi {1^L}} \right)}}{{\left( {1-{\phi_1}} \right)}}+\frac{{{\phi_1}^2\left( {1-{\phi_1}^{2L }} \right)}}{{\left( {1-\phi_1^2} \right)}}} \hfill \\ {=\frac{1}{{{{{\left( {1-{\phi_1}} \right)}}^2}}}\sum\limits_{k=2}^p {\phi_k^2} \left[ {L-2{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}+\frac{{{\phi_1}^2\left( {1-{\phi_1}^{2L }} \right)}}{{\left( {1-\phi_1^2} \right)}}} \right]\sigma_d^2\sum\limits_{k=2}^p L } \hfill \\ {=\frac{{L\left( {p-1} \right)\sigma_d^2}}{{{{{\left( {1-{\phi_1}} \right)}}^2}}}\sum\limits_{k=2}^p {\phi_k^2} \left[ {L-2{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}+\frac{{\phi {1^2}\left( {1-{\phi_1}^{2L }} \right)}}{{\left( {1-\phi_1^2} \right)}}} \right]} \hfill \\ \end{array} $$
(v)

Similarly,

$$ \begin{array}{*{20}c} {\mathrm{VAR}\left( {\frac{1}{{\left( {1-{\phi_1}} \right)}}\sum\limits_{k=2}^p {{\phi_k}} \sum\limits_{j=0}^{L-1 } {{D_{t-k}}_{+j-1}\left( {1-\phi_1^{L-j }} \right)} } \right)} \hfill \\ {\quad =\frac{{L\left( {p-1} \right)\sigma_d^2}}{{{{{\left( {1-{\phi_1}} \right)}}^2}}}\sum\limits_{k=2}^p {\phi_k^2} \left[ {L-2{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}+\frac{{{\phi_1}^2\left( {1-{\phi_1}^{2L }} \right)}}{{\left( {1-\phi_1^2} \right)}}} \right]} \hfill \\ \end{array} $$
(vi)
$$ \begin{array}{*{20}c} {\mathrm{COV}\left( {\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-1 }},\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{D_{t-2 }}} \right)} \hfill \\ {\quad =\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{\phi_1}{\sigma^2}} \hfill \\ \end{array} $$
(vii)

[Since, COV(D t−1, D t−2) = ϕ 1 σ 2 (See Appendix 6)]

Since the second element in the fifth term in (ii) is not a single demand variable, but a sum of demands, thus the relation between a single demand (D t−1) and the sum of demands is negligible since the demand at a particular time does not depend on the sum of demands of all periods. The same logic is applicable to other terms having a sum of terms instead of a single term. We know that the covariance of unrelated terms is zero. Thus, the covariances of the terms involving such unrelated elements are being neglected here.

Thus, the expression for variance of order quantity reduces to,

VAR(\( {q_t} \))

$$ \begin{array}{*{20}c} {={{{\left( {\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)}}^{{^2}}}\sigma_d^2+{{{\left( {\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)}}^{{^2}}}\sigma_d^2} \hfill \\ {+\frac{{2L\left( {p-1} \right)\sigma_d^2}}{{{{{\left( {1-{\phi_1}} \right)}}^2}}}\sum\limits_{k=2}^p {\phi_k^2} \left[ {L-2{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}+\frac{{{\phi_1}^2\left( {1-{\phi_1}^{2L }} \right)}}{{\left( {1-\phi_1^2} \right)}}} \right]} \hfill \\ {-\frac{{2\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}\frac{{\phi 1\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{\phi_1}{\sigma^2}} \hfill \\ {={{{\left( {\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)}}^{{^2}}}\sigma_d^2-\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{\phi_1}{\sigma^2}} \hfill \\ {+{{{\left( {\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)}}^{{^2}}}\sigma_d^2-\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{\phi_1}{\sigma^2}} \hfill \\ {+\frac{{2L\left( {p-1} \right)\sigma_d^2}}{{{{{\left( {1-{\phi_1}} \right)}}^2}}}\sum\limits_{k=2}^p {\phi_k^2} \left[ {L-2{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}+\frac{{{\phi_1}^2\left( {1-{\phi_1}^{2L }} \right)}}{{\left( {1-\phi_1^2} \right)}}} \right]} \hfill \\ {=\left( {\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right)\sigma_d^2\left[ {\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}-\frac{{\phi 1\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}{\phi_1}} \right]} \hfill \\ {+\frac{{\phi 1\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}\sigma_d^2\left[ {\frac{{{\phi_1}\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}-\frac{{\left( {1-{\phi_1}^{L+1 }} \right)}}{{\left( {1-{\phi_1}} \right)}}{\phi_1}} \right]} \hfill \\ {+\frac{{2L\left( {p-1} \right)\sigma_d^2}}{{{{{(1-{\phi_1})}}^2}}}\sum\limits_{k=2}^p {\phi_k^2} \left[ {L-2{\phi_1}\frac{{(1-{\phi_1}^L)}}{{\left( {1-{\phi_1}} \right)}}+\frac{{{\phi_1}^2\left( {1-\phi {1^{2L }}} \right)}}{{\left( {1-\phi_1^2} \right)}}} \right]} \hfill \\ {=\sigma_d^2\left[ {\frac{{(1-{\phi_1}^{L+1 })}}{{(1-{\phi_1})}}\left( {1+{\phi_1}-{\phi_1}^{L+1 }} \right)-\phi {1^{L+2 }}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}} \right]} \hfill \\ {+\frac{{2L\left( {p-1} \right)\sigma_d^2}}{{{{{\left( {1-{\phi_1}} \right)}}^2}}}\sum\limits_{k=2}^p {\phi_k^2} \left[ {L-2{\phi_1}\frac{{\left( {1-{\phi_1}^L} \right)}}{{\left( {1-{\phi_1}} \right)}}+\frac{{\phi {1^2}\left( {1-{\phi_1}^{2L }} \right)}}{{\left( {1-\phi_1^2} \right)}}} \right]} \hfill \\ \end{array} $$
(viii)

Appendix 6

$$ \mathrm{COV}\left( {{D_{t-1 }},{D_{t-2 }}} \right)=E\left[ {{D_{t-1 }}{D_{t-2 }}} \right]-E\left[ {{D_{t-1 }}} \right]E\left[ {{D_{t-2 }}} \right] $$

Now we can write,

$$ \begin{array}{*{20}c} {{D_{t-1 }}{D_{t-2 }}} \hfill \\ {=\left( {\delta +{\phi_1}{D_{t-2 }}+{\phi_2}{D_{t-3 }}+\ldots +{\phi_p}{D_{t-p }}+{\varepsilon_{t-1 }}-{\theta_1}{\varepsilon_{t-2 }}-{\theta_2}{\varepsilon_{t-3 }}-\ldots -{\theta_q}{\varepsilon_{t-q }}} \right){D_{t-2 }}} \hfill \\ {=\left( {1-\sum\limits_{i=1}^p {{\phi_i}} } \right){\mu_d}{D_{t-2 }}+{\phi_1}D_{t-2}^2+{\phi_2}{D_{t-3 }}{D_{t-2 }}+\ldots +{\phi_p}{D_{t-p }}{D_{t-2 }}} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad +{\varepsilon_{t-1 }}{D_{t-2 }}-{\theta_1}{\varepsilon_{t-2 }}{D_{t-2 }}-{\theta_2}{\varepsilon_{t-3 }}{D_{t-2 }}-\ldots -{\theta_q}{\varepsilon_{t-q }}{D_{t-2 }}} \hfill \\ {E\left[ {{D_{t-1 }}{D_{t-2 }}} \right]} \hfill \\ {=\left( {1-\sum\limits_{i=1}^p {{\phi_i}} } \right){{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}+{\phi_1}E\left[ {D_{t-2}^2} \right]+{\phi_2}{{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}+\ldots +{\phi_p}{{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}} \hfill \\ {+E\left[ {{\varepsilon_{t-1 }}{D_{t-2 }}-{\theta_1}{\varepsilon_{t-2 }}{D_{t-2 }}-{\theta_2}{\varepsilon_{t-3 }}{D_{t-2 }}-\ldots -{\theta_q}{\varepsilon_{t-q }}{D_{t-2 }}} \right]} \hfill \\ \end{array} $$

Since error terms are independent and mean of error terms are zero, thus all the terms involving error terms will be zero. Thus,

$$ \begin{array}{*{20}c} {\mathrm{COV}\left( {{D_{t-1 }},{D_{t-2 }}} \right)=E\left[ {{D_{t-1 }}{D_{t-2 }}} \right]-E\left[ {{D_{t-1 }}} \right]E\left[ {{D_{t-2 }}} \right]} \hfill \\ {={{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}+{\phi_1}E\left[ {D_{t-2}^2} \right]-{\phi_1}{{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}-{\phi_2}{{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}+{\phi_2}{{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}-\ldots -{\phi_p}{{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}+{\phi_p}{{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}-{{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}} \hfill \\ {={\phi_1}E\left[ {D_{t-2}^2} \right]-{\phi_1}{{{\left( {E\left[ {{D_{t-2 }}} \right]} \right)}}^2}} \hfill \\ {={\phi_1}\sigma_d^2} \hfill \\ \end{array} $$

Thus, \( \mathrm{COV}\left( {{D_{t-1 }},{D_{t-2 }}} \right)={\phi_1}\sigma_d^2 \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, S., Bhattacharya, R. A generalized measure of bullwhip effect in supply chain with ARMA demand process under various replenishment policies. Int J Adv Manuf Technol 68, 963–979 (2013). https://doi.org/10.1007/s00170-013-4888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-4888-y

Keywords

Navigation