Skip to main content

Advertisement

Log in

Sediment and Nutrient Trapping by River Dams: A Critical Review Based on 15-Year Big Data

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Free-flowing rivers act as conduits for sediment and nutrient transport from the land to coastal oceans. In the past decades, many of global rivers have been dammed for water resource management. The associated ecological impacts have become a wide concern, and have been intensively studied. In this work, we aim to review the research progress of the topic on sediment and nutrient trapping by river dams using CiteSpace, summarize the findings of previous literatures, and propose perspectives for future studies.

Recent Findings

We found that (i) this topic has been continuously concerned and the publication number has been increasing annually. In 2006–2021, there are 1385 publications in total, including 1318 articles and 23 reviews; (ii) dams can interrupt river connectivity and trap sediment and nutrients in reservoirs, greatly deceasing sediment and nutrient loads to coastal oceans; (iii) sediment and nutrient trapping by dams has caused a series of ecological impacts, including reservoir capacity loss, river channel erosion, river delta land loss, reservoir eutrophication, and massive greenhouse gas emissions.

Summary

This review summarized the changes of riverine sediment and nutrient loads caused by dams, and their impacts on river ecosystems. The following aspects should be concerned in future studies: the impacts of biogeochemical cycling within reservoirs on the stoichiometry and bioavailability of nutrients in dam discharge, the net greenhouse gas emissions caused by dams, and the cumulative impacts of cascade dams. It adds our comprehensive understanding of sediment and nutrient trapping by river dams and will be beneficial to future studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data are available on request from the authors.

References

  1. Maavara T, Lauerwald R, Regnier P, Van Cappellen P. Global perturbation of organic carbon cycling by river damming. Nat Commun. 2017;8(1):1–10.

    Article  Google Scholar 

  2. Liu SM, Li LW, Zhang GL, Liu Z, Yu Z, Ren JL. Impacts of human activities on nutrient transports in the Huanghe (Yellow River) estuary. J Hydrol. 2012;430:103–10.

    Article  Google Scholar 

  3. Moran EF, Lopez MC, Moore N, Müller N, Hyndman DW. Sustainable hydropower in the 21st century. Proc Natl Acad Sci. 2018;115(47):11891–8.

    Article  CAS  Google Scholar 

  4. Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ. 2011;9(9):494–502.

    Article  Google Scholar 

  5. Nilsson C, Lepori F, Malmqvist B, Törnlund E, Hjerdt N, Helfield JM, et al. Forecasting environmental responses to restoration of rivers used as log floatways: an interdisciplinary challenge. Ecosystems. 2005;8(7):779–800.

    Article  Google Scholar 

  6. Maavara T, Parsons CT, Ridenour C, Stojanovic S, Dürr HH, Powley HR, et al. Global phosphorus retention by river damming. Proc Natl Acad Sci. 2015;112(51):15603–8.

    Article  CAS  Google Scholar 

  7. Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, et al. Mapping the world’s free-flowing rivers. Nature. 2019;569(7755):215–21.

    Article  CAS  Google Scholar 

  8. Loh ZZ, Zaidi NS, Yong EL, Syafiuddin A, Boopathy R, Kadier A. Current status and future research trends of biofiltration in wastewater treatment: a bibliometric review. Curr Pollut Rep. 2022;8(3):234–48.

    Article  Google Scholar 

  9. Hu Y, Cheng H. The urgency of assessing the greenhouse gas budgets of hydroelectric reservoirs in China. Nat Clim Chang. 2013;3(8):708–12.

    Article  CAS  Google Scholar 

  10. McLean S. On the calculation of suspended load for noncohesive sediments. J Geophys Res Oceans. 1992;97(C4):5759–70.

    Article  Google Scholar 

  11. Gomez B. Bedload transport. Earth Sci Rev. 1991;31(2):89–132.

    Article  Google Scholar 

  12. Kesel RH, Yodis EG, McCraw DJ. An approximation of the sediment budget of the lower Mississippi River prior to major human modification. Earth Surf Proc Land. 1992;17(7):711–22.

    Article  Google Scholar 

  13. Church M. Bed material transport and the morphology of alluvial river channels. Annu Rev Earth Planet Sci. 2006;34:325–54.

    Article  CAS  Google Scholar 

  14. Maeck A, DelSontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, et al. Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol. 2013;47(15):8130–7. https://doi.org/10.1021/es4003907.

    Article  CAS  Google Scholar 

  15. Syvitski JP, Vörösmarty CJ, Kettner AJ, Green P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science. 2005;308(5720):376–80.

    Article  CAS  Google Scholar 

  16. Yang SL, Zhang J, Xu X. Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River. Geophys Res Lett. 2007;34(10):L10401.

    Article  Google Scholar 

  17. Syvitski JP, Kettner AJ, Overeem I, Hutton EW, Hannon MT, Brakenridge GR, et al. Sinking deltas due to human activities. Nat Geosci. 2009;2(10):681–6.

    Article  CAS  Google Scholar 

  18. Mulu A, Dwarakish G. Different approach for using trap efficiency for estimation of reservoir sedimentation. An overview. Aquat Procedia. 2015;4:847–52.

    Article  Google Scholar 

  19. Fu K, He D. Analysis and prediction of sediment trapping efficiencies of the reservoirs in the mainstream of the Lancang River. Chin Sci Bull. 2007;52(2):134–40.

    Article  Google Scholar 

  20. Shi W, Chen Q, Yi Q, Yu J, Ji Y, Hu L, et al. Carbon emission from cascade reservoirs: spatial heterogeneity and mechanisms. Environ Sci Technol. 2017;51(21):12175–81.

    Article  CAS  Google Scholar 

  21. Tang X, Wu M, Li R. Distribution, sedimentation, and bioavailability of particulate phosphorus in the mainstream of the Three Gorges Reservoir. Water Res. 2018;140:44–55.

    Article  CAS  Google Scholar 

  22. Yi Q, Chen Q, Shi W, Lin Y, Hu L. Sieved transport and redistribution of bioavailable phosphorus from watershed with complex river networks to lake. Environ Sci Technol. 2017;51(18):10379–86.

    Article  CAS  Google Scholar 

  23. Tang X, Li R, Wu M, Zhao W, Zhao L, Zhou Y, et al. Influence of turbid flood water release on sediment deposition and phosphorus distribution in the bed sediment of the Three Gorges Reservoir, China. Sci Total Environ. 2019;657:36–45.

    Article  CAS  Google Scholar 

  24. Shi W, Chen Q, Zhang J, Liu D, Yi Q, Chen Y, et al. Nitrous oxide emissions from cascade hydropower reservoirs in the upper Mekong River. Water Res. 2020;173:115582.

    Article  CAS  Google Scholar 

  25. Guo X, Zhu X, Yang Z, Ma J, Xiao S, Ji D, et al. Impacts of cascade reservoirs on the longitudinal variability of fine sediment characteristics: a case study of the Lancang and Nu Rivers. J Hydrol. 2020;581:124343.

    Article  Google Scholar 

  26. Paerl HW, Scott JT, McCarthy MJ, Newell SE, Gardner WS, Havens KE, et al. It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environ Sci Technol. 2016;50(20):10805–13. https://doi.org/10.1021/acs.est.6b02575.

    Article  CAS  Google Scholar 

  27. Paerl HW, Huisman J. Blooms like it hot. Science. 2008;320(5872):57–8.

    Article  CAS  Google Scholar 

  28. Zhang Z, Cao Z, Grasse P, Dai M, Gao L, Kuhnert H, et al. Dissolved silicon isotope dynamics in large river estuaries. Geochim Cosmochim Acta. 2020;273:367–82.

    Article  CAS  Google Scholar 

  29. Shi W, Chen Q, Zhang J, Zheng F, Chen Y. Enhanced riparian denitrification in reservoirs following hydropower production. J Hydrol. 2020;583:124305.

    Article  Google Scholar 

  30. Ran X-b, Chen H-t, Wei J-f, Yao Q-z, Mi T-z, Yu Z-g. Phosphorus speciation, transformation and retention in the Three Gorges Reservoir, China. Mar Freshw Res. 2015;67(2):173–86.

    Article  Google Scholar 

  31. Kunz MJ, Wüest A, Wehrli B, Landert J, Senn DB. Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands. Water Resour Res. 2011;47(12):W12531.

    Article  Google Scholar 

  32. Ouyang W, Hao F, Song K, Zhang X. Cascade dam-induced hydrological disturbance and environmental impact in the upper stream of the Yellow River. Water Resour Manage. 2011;25(3):913–27.

    Article  Google Scholar 

  33. Le ND, Le TPQ, Phung TXB, Duong TT, Didier O. Impact of hydropower dam on total suspended sediment and total organic nitrogen fluxes of the Red River (Vietnam). Proc IAHS. 2020;383:367–74. https://doi.org/10.5194/piahs-383-367-2020.

    Article  CAS  Google Scholar 

  34. Liu X, Joost van Hoek W, Vilmin L, Beusen A, Mogollón JM, Middelburg JJ, et al. Exploring long-term changes in silicon biogeochemistry along the river continuum of the Rhine and Yangtze (Changjiang). Environ Sci Technol. 2020;54(19):11940–50.

    Article  CAS  Google Scholar 

  35. Harrison JA, Frings PJ, Beusen AHW, Conley DJ, McCrackin ML. Global importance, patterns, and controls of dissolved silica retention in lakes and reservoirs. Glob Biogeochem Cycles. 2012;26(2):GB2037. https://doi.org/10.1029/2011GB004228.

    Article  Google Scholar 

  36. Bao L, Li X, Cheng P. Phosphorus retention along a typical urban landscape river with a series of rubber dams. J Environ Manage. 2018;228:55–64.

    Article  CAS  Google Scholar 

  37. Akbarzadeh Z, Maavara T, Slowinski S, Van Cappellen P. Effects of damming on river nitrogen fluxes: a global analysis. Glob Biogeochem Cycles. 2019;33(11):1339–57.

    Article  CAS  Google Scholar 

  38. Maavara T, Dürr HH, Van Cappellen P. Worldwide retention of nutrient silicon by river damming: from sparse data set to global estimate. Glob Biogeochem Cycles. 2014;28(8):842–55.

    Article  CAS  Google Scholar 

  39. Maavara T, Lauerwald R, Regnier P, Van Cappellen P. Global perturbation of organic carbon cycling by river damming. Nat Commun. 2017;8(1):15347. https://doi.org/10.1038/ncomms15347.

    Article  CAS  Google Scholar 

  40. Yin Y, Zhang W, Tang J, Chen X, Zhang Y, Cao X, et al. Impact of river dams on phosphorus migration: a case of the Pubugou Reservoir on the Dadu River in China. Sci Total Environ. 2022;809:151092. https://doi.org/10.1016/j.scitotenv.2021.151092.

    Article  CAS  Google Scholar 

  41. Grabb KC, Ding S, Ning X, Liu SM, Qian B. Characterizing the impact of Three Gorges Dam on the Changjiang (Yangtze River): a story of nitrogen biogeochemical cycling through the lens of nitrogen stable isotopes. Environ Res. 2021;195:110759.

    Article  CAS  Google Scholar 

  42. Cardoso-Silva S, Ferreira PAdL, Figueira RCL, da Silva DCVR, Moschini-Carlos V, Pompêo ML. Factors that control the spatial and temporal distributions of phosphorus, nitrogen, and carbon in the sediments of a tropical reservoir. Environ Sci Pollut Res. 2018;25(31):31776–89.

    Article  CAS  Google Scholar 

  43. Huang J, Greimann B, Kimbrel S. Simulation of sediment flushing in Paonia Reservoir of Colorado. J Hydraul Eng. 2019;145(12):06019015. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001651.

    Article  Google Scholar 

  44. Wang G, Wu B, Wang ZY. Sedimentation problems and management strategies of Sanmenxia Reservoir, Yellow River, China. Water Resour Res. 2005;41(9):W09417.

    Article  Google Scholar 

  45. Alighalehbabakhani F, Miller CJ, Baskaran M, Selegean JP, Barkach JH, Dahl T, et al. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed. J Hydrol. 2017;555:926–37.

    Article  Google Scholar 

  46. Randle TJ, Morris GL, Tullos DD, Weirich FH, Kondolf GM, Moriasi DN, et al. Sustaining United States reservoir storage capacity: need for a new paradigm. Elsevier; 2021. p. 126686.

    Google Scholar 

  47. Zheng S, Xu YJ, Cheng H, Wang B, Xu W, Wu S. Riverbed erosion of the final 565 kilometers of the Yangtze River (Changjiang) following construction of the Three Gorges Dam. Sci Rep. 2018;8(1):1–11.

    Article  Google Scholar 

  48. Lu M, Zhao Q, Ding S, Wang S, Hong Z, Jing Y, et al. Hydro-geomorphological characteristics in response to the water-sediment regulation scheme of the Xiaolangdi Dam in the lower Yellow River. J Clean Prod. 2022;335:130324. https://doi.org/10.1016/j.jclepro.2021.130324.

    Article  Google Scholar 

  49. Bi N, Sun Z, Wang H, Wu X, Fan Y, Xu C, et al. Response of channel scouring and deposition to the regulation of large reservoirs: a case study of the lower reaches of the Yellow River (Huanghe). J Hydrol. 2019;568:972–84. https://doi.org/10.1016/j.jhydrol.2018.11.039.

    Article  Google Scholar 

  50. Dang MH, Umeda S, Yuhi M. Long-term riverbed response of lower Tedori River, Japan, to sediment extraction and dam construction. Environ Earth Sci. 2014;72(8):2971–83.

    Article  Google Scholar 

  51. Du J-L, Yang S-L, Feng H. Recent human impacts on the morphological evolution of the Yangtze River delta foreland: a review and new perspectives. Estuar Coast Shelf Sci. 2016;181:160–9.

    Article  Google Scholar 

  52. Nittrouer JA, Viparelli E. Sand as a stable and sustainable resource for nourishing the Mississippi River delta. Nat Geosci. 2014;7(5):350–4.

    Article  CAS  Google Scholar 

  53. Anthony EJ, Brunier G, Besset M, Goichot M, Dussouillez P, Nguyen VL. Linking rapid erosion of the Mekong River delta to human activities. Sci Rep. 2015;5(1):1–12.

    Article  Google Scholar 

  54. Amenuvor M, Gao W, Li D, Shao D. Effects of dam regulation on the hydrological alteration and morphological evolution of the Volta River Delta. Water. 2020;12(3):646.

    Article  Google Scholar 

  55. Stanley DJ. Nile delta: extreme case of sediment entrapment on a delta plain and consequent coastal land loss. Mar Geol. 1996;129(3–4):189–95.

    Article  Google Scholar 

  56. Meade RH, Moody JA. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol Process Int J. 2010;24(1):35–49.

    Google Scholar 

  57. Wang H, Bi N, Saito Y, Wang Y, Sun X, Zhang J, et al. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: causes and environmental implications in its estuary. J Hydrol. 2010;391(3–4):302–13.

    Article  Google Scholar 

  58. Xu X, Tan Y, Yang G. Environmental impact assessments of the Three Gorges Project in China: issues and interventions. Earth Sci Rev. 2013;124:115–25.

    Article  Google Scholar 

  59. Knoll LB, Vanni MJ, Renwick WH. Phytoplankton primary production and photosynthetic parameters in reservoirs along a gradient of watershed land use. Limnol Oceanogr. 2003;48(2):608–17.

    Article  Google Scholar 

  60. Li X, Huang T, Ma W, Sun X, Zhang H. Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: implications for management. Sci Total Environ. 2015;521:27–36.

    Article  Google Scholar 

  61. Catherine A, Mouillot D, Escoffier N, Bernard C, Troussellier M. Cost effective prediction of the eutrophication status of lakes and reservoirs. Freshw Biol. 2010;55(11):2425–35.

    Article  Google Scholar 

  62. Chen N, Mo Q, Kuo Y-M, Su Y, Zhong Y. Hydrochemical controls on reservoir nutrient and phytoplankton dynamics under storms. Sci Total Environ. 2018;619:301–10.

    Article  Google Scholar 

  63. Xu Z, Cai X, Yin X, Su M, Wu Y, Yang Z. Is water shortage risk decreased at the expense of deteriorating water quality in a large water supply reservoir? Water Res. 2019;165:114984.

    Article  CAS  Google Scholar 

  64. Yamamoto T. The Seto Inland Sea – eutrophic or oligotrophic? Mar Pollut Bull. 2003;47(1):37–42. https://doi.org/10.1016/S0025-326X(02)00416-2.

    Article  CAS  Google Scholar 

  65. Chen Q, Shi W, Huisman J, Maberly SC, Zhang J, Yu J, et al. Hydropower reservoirs on the upper Mekong River modify nutrient bioavailability downstream. Natl Sci Rev. 2020;7(9):1449–57.

    Article  CAS  Google Scholar 

  66. Maavara T, Chen Q, Van Meter K, Brown LE, Zhang J, Ni J, et al. River dam impacts on biogeochemical cycling. Nat Rev Earth Environ. 2020;1(2):103–16.

    Article  Google Scholar 

  67. Camargo JA, Alonso Á, de la Puente M. Eutrophication downstream from small reservoirs in mountain rivers of Central Spain. Water Res. 2005;39(14):3376–84. https://doi.org/10.1016/j.watres.2005.05.048.

    Article  CAS  Google Scholar 

  68. Van Cappellen P, Maavara T. Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrol Hydrobiol. 2016;16(2):106–11.

    Article  Google Scholar 

  69. Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VL, et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci. 2011;4(9):593–6.

    Article  CAS  Google Scholar 

  70. Berberich ME, Beaulieu JJ, Hamilton TL, Waldo S, Buffam I. Spatial variability of sediment methane production and methanogen communities within a eutrophic reservoir: importance of organic matter source and quantity. Limnol Oceanogr. 2020;65(6):1336–58. https://doi.org/10.1002/lno.11392.

    Article  CAS  Google Scholar 

  71. Maavara T, Lauerwald R, Laruelle GG, Akbarzadeh Z, Bouskill NJ, Van Cappellen P, et al. Nitrous oxide emissions from inland waters: are IPCC estimates too high? Glob Change Biol. 2019;25(2):473–88.

    Article  Google Scholar 

  72. Lauerwald R, Regnier P, Figueiredo V, Enrich-Prast A, Bastviken D, Lehner B, et al. Natural lakes are a minor global source of N2O to the atmosphere. Global Biogeochem Cycles. 2019;33(12):1564–81.

    Article  CAS  Google Scholar 

  73. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A. Freshwater methane emissions offset the continental carbon sink. Science. 2011;331(6013):50.

    Article  CAS  Google Scholar 

  74. Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, et al. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience. 2016;66(11):949–64.

    Article  Google Scholar 

  75. Prairie YT, Alm J, Beaulieu J, Barros N, Battin T, Cole J, et al. Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems. 2017;21:1058–71.

    Article  Google Scholar 

  76. Giles J. Methane quashes green credentials of hydropower. Nature Publishing Group; 2006.

    Book  Google Scholar 

  77. Gunkel G. Hydropower – a green energy? Tropical reservoirs and greenhouse gas emissions. CLEAN Soil Air Water. 2009;37(9):726–34. https://doi.org/10.1002/clen.200900062.

    Article  CAS  Google Scholar 

  78. Shi W, Pan G, Chen Q, Song L, Zhu L, Ji X. Hypoxia remediation and methane emission manipulation using surface oxygen nanobubbles. Environ Sci Technol. 2018;52(15):8712–7.

    Article  CAS  Google Scholar 

  79. Hilt S, Grossart HP, McGinnis DF, Keppler F. Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems. Limnol Oceanogr. 2022;67:S76–88.

    Article  CAS  Google Scholar 

  80. Van Dam BR, Tobias C, Holbach A, Paerl HW, Zhu G. CO2 limited conditions favor cyanobacteria in a hypereutrophic lake: an empirical and theoretical stable isotope study. Limnol Oceanogr. 2018;63(4):1643–59.

    Article  Google Scholar 

  81. Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr. 2016;61(S1):S101–18.

    Article  Google Scholar 

  82. Ricão Canelhas M, Denfeld BA, Weyhenmeyer GA, Bastviken D, Bertilsson S. Methane oxidation at the water-ice interface of an ice-covered lake. Limnol Oceanogr. 2016;61(S1):S78–90. https://doi.org/10.1002/lno.10288.

    Article  Google Scholar 

  83. Ni B-J, Ruscalleda M, Pellicer-Nàcher C, Smets BF. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the general ASM models. Environ Sci Technol. 2011;45(18):7768–76. https://doi.org/10.1021/es201489n.

    Article  CAS  Google Scholar 

  84. Su X, Chen Y, Wang Y, Yang X, He Q. Impacts of chlorothalonil on denitrification and N2O emission in riparian sediments: microbial metabolism mechanism. Water Res. 2019;148:188–97. https://doi.org/10.1016/j.watres.2018.10.052.

    Article  CAS  Google Scholar 

  85. Beaulieu JJ, Tank JL, Hamilton SK, Wollheim WM, Hall RO, Mulholland PJ, et al. Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci. 2011;108(1):214–9. https://doi.org/10.1073/pnas.1011464108.

    Article  Google Scholar 

  86. Zhao Y, Wu B, Zeng Y. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences. 2013;10(2):1219–30.

    Article  Google Scholar 

  87. Harrison JA, Prairie YT, Mercier-Blais S, Soued C. Year-2020 Global distribution and pathways of reservoir methane and carbon dioxide emissions according to the greenhouse gas from reservoirs (G-res) model. Glob Biogeochem Cycles. 2021;35(6):e2020GB006888.

    Article  CAS  Google Scholar 

  88. Fearnside PM. Emissions from tropical hydropower and the IPCC. Environ Sci Policy. 2015;50:225–39.

    Article  Google Scholar 

  89. Li S, Wang F, Zhou T, Cheng T, Wang B. Carbon dioxide emissions from cascade hydropower reservoirs along the Wujiang River, China. Inland Waters. 2018;8(2):157–66.

    Article  CAS  Google Scholar 

  90. Grumbine RE, Xu J. Mekong hydropower development. Science. 2011;332(6026):178–9.

    Article  CAS  Google Scholar 

  91. Fan H, He D, Wang H. Environmental consequences of damming the mainstream Lancang-Mekong River: a review. Earth-Sci Rev. 2015;146:77–91. https://doi.org/10.1016/j.earscirev.2015.03.007.

    Article  Google Scholar 

  92. Kondolf G, Rubin Z, Minear J. Dams on the Mekong: cumulative sediment starvation. Water Resour Res. 2014;50(6):5158–69.

    Article  Google Scholar 

Download references

Acknowledgements

I thank Editor Dr. Danielle Adams for her invitation to prepare this review, and also thank Ziqian Li for his help in preparing the picture in this manuscript.

Funding

This study was supported by the National Natural Science Foundation of China (no. 42277060 and 51979171) and Starting Research Fund of Nanjing University of Information Engineering (no. 2021r097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqing Shi or Boqiang Qin.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Qin, B. Sediment and Nutrient Trapping by River Dams: A Critical Review Based on 15-Year Big Data. Curr Pollution Rep 9, 165–173 (2023). https://doi.org/10.1007/s40726-023-00258-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-023-00258-7

Keywords

Navigation