Skip to main content

Advertisement

Log in

Forecasting Environmental Responses to Restoration of Rivers Used as Log Floatways: An Interdisciplinary Challenge

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Log floating in the 19th to mid 20th centuries has profoundly changed the environmental conditions in many northern river systems of the world. Regulation of flow by dams, straightening and narrowing of channels by various piers and wing dams, and homogenization of bed structure are some of the major impacts. As a result, the conditions for many riverine organisms have been altered. Removing physical constructions and returning boulders to the channels can potentially restore conditions for these organisms. Here we describe the history of log driving, review its impact on physical and biological conditions and processes, and predict the responses to restoration. Reviewing the literature on comparable restoration efforts and building upon this knowledge, using boreal Swedish rivers as an example, we address the last point. We hypothesize that restoration measures will make rivers wider and more sinuous, and provide rougher bottoms, thus improving land-water interactions and increasing the retention capacity of water, sediment, organic matter and nutrients. The geomorphic and hydraulic/hydrologic alterations are supposed to favor production, diversity, migration and reproduction of riparian and aquatic organisms. The response rates are likely to vary according to the types of processes and organisms. Some habitat components, such as beds of very large boulders and bedrock outcrops, and availability of sediment and large woody debris are believed to be extremely difficult to restore. Monitoring and evaluation at several scales are needed to test our predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Agnoletti M. 1995. From the Dolomites to Venice: rafts and river driving along the Piave River in Italy (13th to 20th centuries). J Soc Ind Archeol 21:15–31

    Google Scholar 

  • Anderson NH, Sedell JR, Triska FJ. 1978. The role of aquatic invertebrates in processing of wood in coniferous forest streams. Am Midl Nat 100:64–82

    CAS  Google Scholar 

  • Andersson E, Nilsson C, Johansson ME. 2000. Plant dispersal in boreal rivers and its relation to the diversity of riparian flora. J Biogeogr 27:1095–106

    Article  Google Scholar 

  • Andersson G. 1907. Timmertransporter på de svenska vattendragen och dess geografiska förutsättningar. Ymer 1907:315–71

    Google Scholar 

  • Arnekleiv JV, Raddum GG. 2001. Stocking Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) in rivers: diet selectivity and the effects on the macroinvertebrate community. Nord J Freshw Res 75:109–26

    Google Scholar 

  • Auble GT, Scott ML. 1998. Fluvial disturbance patches and cottonwood recruitment along the upper Missouri River, Montana. Wetlands 18:546–56

    Google Scholar 

  • Bagliniere JL, Maisse G. 2002. The biology of brown trout, Salmo trutta L., in the Scorff River, Brittany: a synthesis of studies from 1972 to 1997. Prod Anim 15:319–31

    Google Scholar 

  • Barmuta L. 2002. Monitoring, survey and experimentation in streams and rivers. Port Chester (NY): Cambridge University Press

    Google Scholar 

  • Bams RA. 1969. Adaptations of sockeye associated with incubation in stream gravel. In: Northcote TG, Ed. Symposium on salmon and trout in streams. Vancover (BC): HR Macmillan Lectures in Fisheries, University of British Columbia, p 71–88

    Google Scholar 

  • Bathurst JC. 1993. Flow resistance through the channel network. In: Beven KJ, Kirkby MJ, Eds. Channel network hydrology. Chichester (UK): Wiley. p 69–98

    Google Scholar 

  • Baxter CV, Hauer FR. 2000. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Can J Fish Aquat Sci 57:1470–81

    Article  Google Scholar 

  • Benda LE, Poff NL, Tague C, Palmer MA, Pizzuto J, Cooper S, Stanley E, Moglen G. 2002. How to avoid train wrecks when using science in environmental problem solving. BioScience 52:1127–36

    Google Scholar 

  • Bendix J. 1999. Stream power influence on southern Californian riparian vegetation. J Veg Sci 10:243–52

    Google Scholar 

  • Björklund J. 1984. From the Gulf of Bothnia to the White Sea: Swedish direct investments in the sawmill industry of Tsarist Russia. Scand Econ Hist Rev 1:17–41

    Google Scholar 

  • Blom C, Voesenek L. 1996. Flooding: the survival strategies of plants. TREE 11:290–5

    Google Scholar 

  • Borchardt D. 1993. Effects of flow and refugia on drift loss of benthic macroinvertebrates: implications for habitat restoration in lowland streams. Freshw Biol 29:221–7

    Google Scholar 

  • Bradshaw AD. 2002. Introduction and philosophy. In: Perrow MR, Davy AJ, Eds. Handbook of ecological restoration, vol. 1: Principles of restoration. Cambridge (UK): Cambridge University Press. p 3–9

    Google Scholar 

  • Brookes A. 1985. River channelisation: traditional engineering methods, physical consequences and alternative practices. Progr Phys Geogr 9:44–73

    Google Scholar 

  • Brookes A. 1988. Channelized rivers: perspectives for environmental management. Chichester (UK): Wiley

    Google Scholar 

  • Brookes A. 1994. River channel change. In: Calow P, Petts GE, Eds. The rivers handbook, vol. 2. Oxford (UK): Blackwell Science. p 55–75

    Google Scholar 

  • Brooks AP, Brierley GJ, Millar RG. 2003. The long-term control of vegetation and woody debris on channel and flood-plain evolution: insights from a paired catchment study in southeastern Australia. Geomorphology 51:7–29

    Article  Google Scholar 

  • Bryant JP. 1987. Feltleaf willow-snowshoe hare interactions: plant carbon/nutrient balance and floodplain succession. Ecology 68:1319–27

    Google Scholar 

  • Byström C. 1868. Om fisket i Umeå elf och skärgård. Landtbr-Akad Tidskr 1868:91–100

    Google Scholar 

  • Carlson JY, Andrus CW, Froelich HA. 1990. Woody debris, channel features, and macroinvertebrates of streams with logged and undisturbed riparian timber in northeastern Oregon, USA. Can J Fish Aquat Sci 47:1103–11

    Google Scholar 

  • Chambers PA. 1987. Light and nutrients in the control of aquatic plant community structure: 2. in situ observations. J Ecol 75:621–8

    Google Scholar 

  • Chambers PA, Kalff J. 1987. Light and nutrients in the control of aquatic plant community structure 1: in situ experiments. J Ecol 75:611–9

    Google Scholar 

  • Chambers PA, Prepas EE, Hamilton HR, Bothwell ML. 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol Appl 1:249–57

    Google Scholar 

  • Chapman DW, Knudsen E. 1980. Channelization and livestock impacts on salmonid habitat and biomass in Western Washington. Trans Am Fish Soc 109:357–63

    Article  Google Scholar 

  • Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, Lodge DM, Pascual M, Pielke R Jr, Pizer W, Pringle C, Reid WV, Rose KA, Sala O, Schlesinger WH, Wall DH, Wear D. 2001. Ecological forecasts: an emerging imperative. Science 293:657–60

    Article  PubMed  CAS  Google Scholar 

  • Clarke SJ, Bruce-Burgess L, Wharton G. 2003. Linking form and function: towards an eco-hydromorphic approach to sustainable river restoration. Aquat Conserv Mar Freshw Ecosyst 13:439–50

    Google Scholar 

  • Connell JH. 1978. Diversity in tropical rain forests and coral reefs. Science 199:1302–10

    PubMed  CAS  Google Scholar 

  • Cooper SD, Diehl S, Kratz K, Sarnelle O. 1998. Implications of scale for patterns and processes in stream ecology. Aust J Ecol 23:27–40

    Google Scholar 

  • Craig PC, Poulin VA. 1975. Movements and growth of arctic grayling (Thymallus arcticus) and juvenile arctic char (Salvelinus alpinus) in a small arctic stream, Alaska. J Fish Res Board Can 32: 689–97

    Google Scholar 

  • Crisp DT. 2000. Trout and salmon: ecology, conservation and rehabilitation. Oxford (UK): Fishing News Books

    Google Scholar 

  • Cunjak RA, Power G. 1986. Winter habitat utilization by stream resident brook trout (Salvelinus fontinalis) and brown rout (Salmo trutta). Can J Fish Aquat Sci 43:1970–81

    Article  Google Scholar 

  • Curran JH, Wohl EE. 2003. Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington. Geomorphology 51:141–57

    Article  Google Scholar 

  • Curry RA, Noakes DLG. 1995. Groundwater and the selection of spawning sites by brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 52:1733–40

    Google Scholar 

  • Dahl J. 1998. The impact of vertebrate and invertebrate predators on a stream benthic community. Oecologia 117:217–26

    Article  Google Scholar 

  • Dahl J, Greenberg L. 1996. Impact on stream benthic prey by benthic vs drift feeding predators: a meta-analysis. Oikos 77:177–81

    Google Scholar 

  • de Jong MCV, Cowx IG, Scruton DA. 1997. An evaluation of instream habitat restoration techniques on salmonid populations in a Newfoundland stream. Reg Rivers Res Manage 13:603–14

    Google Scholar 

  • Dietrich WE. 1987. Mechanics of flow and sediment transport in river bends. In: Richards KS, Ed. River channels: environment and process. Institute of British Geographers Special Publication, vol. 18. Basil Blackwell, Inc. p 179–227

  • Dietrich WE, Kirchner JW, Ikeda H, Iseaya F. 1989. Sediment supply and the development of the coarse surface layer in gravel-bedded rivers. Nature 340:215–7

    Article  Google Scholar 

  • Dobson M, Hildrew AG. 1992. A test of resource limitation among shredding detritivores in low order streams in southern England. J Anim Ecol 61:69–77

    Google Scholar 

  • Downs PW, Kondolf GM. 2002. Post-project appraisals in adaptive management of river channel restoration. Environ Manage 29:477–96

    Article  PubMed  Google Scholar 

  • Ekman W. 1922. Handbok i skogsteknologi. Stockholm (Sweden): C. E. Fritzes bokförlags AB

    Google Scholar 

  • Erixon G. 1981. Aquatic macrophytes and their environment in the Vindelälven river, northern Sweden. Wahlenbergia 7:61–71

    Google Scholar 

  • Fernald AG, Wigington PJ Jr, Landers DH. 2001. Transient storage and hyporheic flow along the Willamette River: field measurement and model estimates. Water Resour Res 37:1681–94

    Article  Google Scholar 

  • Freeberg MH, Taylor WW, Brown RW. 1990. Effect of egg and larval survival on year-class strength of lake whitefish in Grand Traverse Bay, Lake Michigan. Trans Am Fish Soc 119:92–100

    Article  Google Scholar 

  • Friedman JM, Auble GT. 1999. Mortality of riparian box elder from sediment mobilization and extended inundation. Reg Rivers Res Manage 15:463–76

    Google Scholar 

  • Gibson RJ. 1966. Some factors influencing the distribution of brook trout and young Atlantic salmon. J Fish Res Board Can 23:1977–9

    Google Scholar 

  • Goodwin CN, Hawkins CP, Kershner JL. 1997. Riparian restoration in the western United States: overview and perspective. Restor Ecol 5:4–14

    Article  Google Scholar 

  • Gregory SV, Swanson FJ, McKee WA, Cummins KW. 1991. An ecosystem perspective of riparian zones: focus on links between land and water. BioScience 41:540–51

    Google Scholar 

  • Haapala A, Muotka T, Markkola A. 2001. Breakdown and macroinvertebrate and fungal colonization of alder, birch, and willow leaves in a boreal forest stream. J N Am Benthol Soc 20:395–407

    Google Scholar 

  • Haapala A, Muotka T. 1998. Seasonal dynamics of detritus and associated macroinvertebrates in a channelized boreal stream. Arch Hydrobiol 142:171–89

    Google Scholar 

  • Hancock PJ. 2002. Human impacts on the stream-groundwater exchange zone. Environ Manage 29:763–81

    Article  PubMed  Google Scholar 

  • Harner MJ, Stanford JA. 2003. Differences in cottonwood growth between a losing and a gaining reach of an alluvial floodplain. Ecology 84:1453–8

    Google Scholar 

  • Harvey JW, Bencala KE. 1993. The effect of streambed topography on surface–subsurface water exchange in mountain catchments. Water Resour Res 29:89–98

    Google Scholar 

  • Hax CL, Golladay SW. 1998. Flow disturbance of macroinvertebrates inhabiting sediments and woody debris in a prairie stream. Am Midl Nat 139:210–23

    Google Scholar 

  • Heggenes J. 1988. Substrate preferences of brown trout fry (Salmo trutta) in artificial stream channels. Can J Fish Aquat Sci 45:1801–6

    Article  Google Scholar 

  • Heggenes J, Saltveit SJ. 1990. Seasonal and spatial microhabitat selection and segregation in young Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., in a Norwegian river. J Fish Biol 36:707–20

    Google Scholar 

  • Hellstrand G. 1980. Log floating in Dalälven: development, technique, organization. Malung (Sweden): Malungs Boktryckeri AB

    Google Scholar 

  • Helmiö T. 2002. Unsteady 1D flow model of compound channel with vegetated floodplains. J Hydrol 269:89–99

    Google Scholar 

  • Hill AR, Labadia CF, Sanmugadas K. 1998. Hyporheic zone hydrology and nitrate dynamics in relation to the streambed topography of a N-rich stream. Biogeochemistry 42:285–310

    Article  CAS  Google Scholar 

  • Hoffmann A, Hering D. 2000. Wood-associated macroinvertebrate fauna in Central European streams. Int Rev Hydrobiol 85:25–48

    Google Scholar 

  • Hollister-Short G. 1994. The other side of the coin: wood transport systems in pre-industrial Europe. Hist Technol 16:72–97

    Google Scholar 

  • Huston MA. 1994. Biological diversity: the coexistence of species on changing landscapes. Cambridge (UK): Cambridge University Press

    Google Scholar 

  • Hutchinson PA, Webster IT. 1998. Solute uptake in aquatic sediments due to current–obstacle interactions. J Environ Engin 124:419–26

    CAS  Google Scholar 

  • Jungwirth M, Muhar S, Schmutz S. 2002. Re-establishing and assessing ecological integrity in riverine landscapes. Freshw Biol 47:867–87

    Article  Google Scholar 

  • Jutila E, Ahvonen A, Laamanen M, Koskiniemi J. 1998. Adverse impact of forestry on fish and fisheries in stream environments of the Isojoki basin, western Finland. Boreal Environ Res 3:395–404

    Google Scholar 

  • Karau J. 1975. Water transport and wood: the current situation. Report EPS 3-WP-75–3. Ottawa (ON): Environment Canada

  • Kasahara T, Wondzell SM. 2003. Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resour Res 39(1):1005

    Article  Google Scholar 

  • Kemp JL, Harper DM, Crosa GA. 1999. Use of ‘functional habitats’ to link ecology with morphology and hydrology in river rehabilitation. Aquat Conserv Mar Freshw Ecosyst 9:159–78

    Google Scholar 

  • Kielland K, Bryant JP. 1998. Moose herbivory in taiga: effects on biogeochemistry and vegetation dynamics in primary succession. Oikos 82:377–83

    Google Scholar 

  • Knight DW, Shiono K. 1996. River channel and floodplain hydraulics. In: Anderson MG, Walling DE, Bates PD, Eds. Floodplain processes. Chichester (UK): Wiley. p 139–82

    Google Scholar 

  • Knighton D. 1998. Fluvial forms and processes: a new perspective. London (UK): Edward Arnold

    Google Scholar 

  • Laasonen P, Muotka T, Kivijärvi I. 1998. Recovery of macroinvertebrate communities from stream habitat restoration. Aquat Conserv Mar Freshw Ecosyst 8:101–13

    Google Scholar 

  • Ledger ME, Hildrew AG. 2001. Recolonization by the benthos of an acid stream following a drought. Arch Hydrobiol 152:1–17

    Google Scholar 

  • Leman VN. 1993. Spawning sites of chum salmon Oncorhynchus keta: microhydrological regime and viability of progeny in redds (Kamchatka River basin). J Ichthyol 33(2):104–17

    Google Scholar 

  • Leopold LB, Wolman MG, Miller JP. 1964. Fluvial processes in geomorphology. San Francisco (CA): Wiley

    Google Scholar 

  • Li S-G, Venkataraman L, McLaughlin D. 1992. Stochastic theory for irregular stream modeling. Part 1: flow resistance. J Hydraul Eng 118:1079–90

    Google Scholar 

  • Liljaniemi P, Vuori KM, Ilyashuk B, Luotonen H. 2002. Habitat characteristics and macroinvertebrate assemblages in boreal forest streams: relations to catchment silvicultural activities. Hydrobiologia 474:239–51

    Article  Google Scholar 

  • Lindroth A. 1955. Mergansers as salmon and trout predators in the river Indalsälven. Rept Inst Freshw Res Drottningholm 36:126–32

    Google Scholar 

  • Lindroth A. 1957. Baltic salmon fluctuations: a reply. Rept Inst Freshw Res Drottningholm 38:109–30

    Google Scholar 

  • Lindroth A. 1963. Salmon conservation in Sweden. Trans Am Fish Soc 92:286–91

    Google Scholar 

  • Linløkken A. 1997. Effects of instream habitat enhancement on fish populations of a small Norwegian stream. Nord J Freshw Res 73:50–9

    Google Scholar 

  • Lorenz JM, Eiler JH. 1989. Spawning habitat and redd characteristics of sockeye salmon in the glacial Taku River, British Columbia and Alaska. Trans Am Fish Soc 118:495–502

    Article  Google Scholar 

  • MacFarlane WA, Wohl E. 2003. Influence of step composition on step geometry and flow resistance in step-pool streams of the Washington Cascades. Water Resour Res 39(2):1037

    Article  Google Scholar 

  • Mackin JH. 1948. Concept of the graded river. Geol Soc Am Bull 59:463–511

    Google Scholar 

  • Maddock I. 1999. The importance of physical habitat assessment for evaluating river health. Freshw Biol 41:373–91

    Article  Google Scholar 

  • Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84

    Article  Google Scholar 

  • Mäki-Petäys A, Vehanen T, Muotka T. 2000. Microhabitat use by age-0 brown trout and grayling: seasonal responses to streambed restoration under different flows. Trans Am Fish Soc 129:771–81

    Google Scholar 

  • Malcolm IA, Soulsby C, Youngson AF, Petry J. 2003. Heterogeneity in ground water–surface water interactions in the hyporheic zone of a salmonid spawning stream. Hydrol Proc 17:601–17

    Article  Google Scholar 

  • Malmqvist B, Oberle D. 1995. Macroinvertebrate effects on leaf pack decomposition in a lake outlet stream in northern Sweden. Nord J Freshw Res 70:12–20

    Google Scholar 

  • McInnes PF, Naiman RJ, Pastor J, Cohen Y. 1992. Effects of moose browsing on vegetation and litter of the boreal forest, Isle Royale, Michigan, USA. Ecology 73:2059–75

    Google Scholar 

  • McKinnell SM. 1998. Atlantic salmon (Salmo salar L.) life history variation: implications for the Baltic Sea fishery. Dissertation, Umeå (Sweden): Swedish University of Agricultural Sciences

  • McKinnell SM, Karlström Ö. 1999. Spatial and temporal covariation in the recruitment and abundance of Atlantic salmon populations in the Baltic Sea. ICES J Mar Sci 56:433–43

    Article  Google Scholar 

  • Meyer KA, Griffith JS. 1997. First-winter survival of rainbow trout and brook trout in the Henrys Fork of the Snake River, Idaho. Can J Zool 75:59–63

    Google Scholar 

  • Middleton B. 1999. Wetland restoration, flood pulsing and disturbance dynamics. New York (NY): Wiley

    Google Scholar 

  • Millar RG. 1999. Grain and form resistance in gravel-bed rivers. J Hydraul Res 37:303–12

    Article  Google Scholar 

  • Moore KMS, Gregory SV. 1988. Summer habitat utilization and ecology of cutthroat trout fry (Salmo clarki) in Cascade Mountain streams. Can J Fish Aquat Sci 45:1921–30

    Google Scholar 

  • Müller K. 1962. Flottningens inverkan på fisket. Schlitz (Germany): H. Guntrum II

    Google Scholar 

  • Muotka T, Laasonen P. 2002. Ecosystem recovery in restored headwater streams: the role of enhanced leaf retention. J Appl Ecol 39:145–56

    Article  Google Scholar 

  • Muotka T, Paavola R, Haapala A, Novikmec M, Laasonen P. 2002. Long-term recovery of stream habitat structure and benthic invertebrate communities from in-stream restoration. Biol Cons 105:243–53

    Google Scholar 

  • Naiman RJ, Bilby RE, Bisson PA. 2000. Riparian ecology and management in the Pacific coastal rain forest. BioScience 50:996–1011

    Google Scholar 

  • Naiman RJ, Décamps H. 1997. The ecology of interfaces: riparian zones. Ann Rev Ecol Syst 28:621–58

    Google Scholar 

  • Naiman RJ, Décamps H, Pollock M. 1993. The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209–12

    Google Scholar 

  • Naiman RJ, Melillo JM, Lock MA, Ford TE, Reice SR. 1987. Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum. Ecology 68:1139–56

    Google Scholar 

  • Näslund I. 1989. Effects of habitat improvement on the brown trout, Salmo trutta L., population of a northern Swedish stream. Aquacult Fish Manage 20:463–74

    Google Scholar 

  • Newbury RW, Gaboury M. 1988. The use of natural stream characteristics for stream rehabilitation works below the Manitoba escarpment. Can Water Resour J 13:35–51

    Google Scholar 

  • Nielson JL, Lisle TE, Ozaki V. 1994. Thermally stratified pools and their use by steelhead in northern California streams. Trans Am Fish Soc 123:613–26

    Google Scholar 

  • Nilsson C. 1987. Distribution of stream-edge vegetation along a gradient of current velocity. J Ecol 75:513–22

    Google Scholar 

  • Nilsson C. 1999. Rivers and streams. Acta Phytogeogr Suec 84:135–48

    Google Scholar 

  • Nilsson C, Gardfjell M, Grelsson G. 1991. Importance of hydrochory in structuring plant communities along rivers. Can J Bot 69:2631–3

    Google Scholar 

  • Nilsson C, Grelsson G. 1990. The effects of litter displacement on riverbank vegetation. Can J Bot 68:735–41

    Article  Google Scholar 

  • Nilsson C, Jansson R. 1995. Floristic differences between riparian corridors of regulated and free-flowing boreal rivers. Reg Rivers Res Manage 11:55–66

    Google Scholar 

  • Nilsson C, Andersson E, Merritt DM, Johansson ME. 2002. Differences in riparian flora between riverbanks and river lakeshores explained by dispersal traits. Ecology 83:2878–87

    Article  Google Scholar 

  • Nilsson C, Pizzuto JE, Moglen GE, Palmer MA, Stanley EH, Bockstael NE, Thompson LC. 2003. Ecological forecasting and the urbanization of stream ecosystems: challenges for economists, hydrologists, geomorphologists, and ecologists. Ecosystems 6:659–74

    Article  Google Scholar 

  • Östlund L. 1993. Exploitation and structural changes in the north Swedish boreal forest 1800–1992. Dissertation, Umeå (Sweden): Swedish University of Agricultural Sciences

  • Östlund L, Zackrisson O, Axelsson A-L. 1997. The history and transformation of a Scandinavian boreal forest landscape since the 19th century. Can J For Res 27:1198–206

    Google Scholar 

  • Palmer MA, Ambrose RF, Poff NL. 1997. Ecological theory and community restoration ecology. Restor Ecol 5:291–300

    Article  Google Scholar 

  • Pastor J, Naiman RJ, Dewey B, McInnes P. 1988. Moose, microbes and the boreal forest. BioScience 38:770–7

    Google Scholar 

  • Peckarsky BL, Taylor BW, Caudill CC. 2000. Hydrologic and behavioral constraints on oviposition of stream insects: implications for adult dispersal. Oecologia 125:186–200

    Article  Google Scholar 

  • Petts GE. 1980. Long-term consequences of upstream impoundment. Environ Cons 7:325–32

    Google Scholar 

  • Petts GE. 1984. Impounded rivers. Chichester (UK): Wiley

    Google Scholar 

  • Pollock MM, Naiman RJ, Hanley TA. 1998. Plant species richness in riparian wetlands: a test of biodiversity theory. Ecology 79:94–105

    Google Scholar 

  • Quinn TP, Peterson NP. 1996. The influence of habitat complexity and fish size on over-winter survival and growth of individually marked juvenile coho salmon (Oncorhynchus kisutch) in Big Beef creek, Washington. Can J Fish Aquat Sci 53:1555–64

    Google Scholar 

  • Rector WG. 1953. Log transportation in the lake states lumber industry 1840–1918: the movement of logs and its relationship to land settlement, waterway development, railroad construction, lumber production, and prices. Glendale (CA): Clark

    Google Scholar 

  • Renman G. 1989. Distribution of littoral macrophytes in a North Swedish riverside lagoon in relation to bottom freezing. Aquat Bot 33:243–56

    Article  Google Scholar 

  • Rhoads BL, Schwartz JS, Porter S. 2003. Stream geomorphology, bank vegetation, and three-dimensional habitat hydraulics for fish in midwestern agricultural streams. Water Resour Res 39(8):1218

    Article  Google Scholar 

  • Richardson J. 1991. Seasonal food limitation on detritivores in a montane stream: an experimental test. Ecology 73:873–87

    Google Scholar 

  • Roni P, Beechie TJ, Bilby RE, Leonetti FE, Pollock MM, Pess GR. 2002. A review of stream restoration techniques and a hierarchical strategy for prioritizing restoration in Pacific northwest watersheds. N Am J Fish Manage 22:1–20

    Article  Google Scholar 

  • Rood SB, Gourley CR, Ammon EM, Heki LG, Klotz JR, Morrison ML, Mosley D, Scoppettone GG, Swanson S, Wagner PL. 2003. Flows for floodplain forests: a successful riparian restoration. BioScience 53:647–56

    Google Scholar 

  • Scheifele M. 1999. Floating and rafting in the Black Forest from the middle ages until the 19th century: techniques and economic role. Allg Forst Jagdztg 170:165–9

    Google Scholar 

  • Schlosser IJ. 1985. Flow regime, juvenile abundance, and the assemblage structure of stream fishes. Ecology 66:1484–90

    Google Scholar 

  • Schön L. 2000. En modern svensk ekonomisk historia: tillväxt och omvandling under två sekel. Stockholm (Sweden): SNS Förlag

    Google Scholar 

  • Scruton DA, Anderson TC, King LW. 1998. Pamehac Brook: a case study of the restoration of a Newfoundland, Canada, river impacted by flow diversion for pulpwood transportation. Aquat Conserv Mar Freshw Ecosyst 8:145–57

    Google Scholar 

  • Sempeski P, Gaudin P. 1995. Habitat selection by grayling: I. spawning habitats. J Fish Biol 47:256–65

    Google Scholar 

  • (SER) Society for Ecological Restoration Science. 2002. The SER primer on ecological restoration. Society for Ecological Restoration Science & Policy Working Group. http://www.ser.org

  • Shannon JP, Blinn DW, McKinney T, Benenati EP, Wilson KP, O’Brien C. 2001. Aquatic food base response to the 1996 test flood below Glen Canyon Dam, Colorado River, Arizona. Ecol Appl 11:672–85

    Google Scholar 

  • Smith DC. 1972. A history of lumbering in Maine 1861–1960. Orono (ME): University of Maine Press

    Google Scholar 

  • Stanford JA, Ward JV. 1993. An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. J N Am Benthol Soc 12:48–60

    Google Scholar 

  • Stone MK, Wallace JB. 1998. Long-term recovery of a mountain stream from clearcut logging: the effects of forest succession on benthic invertebrate community structure. Freshw Biol 39:151–69

    Article  Google Scholar 

  • Stromberg JC. 2001. Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. J Arid Environ 49:17–34

    Article  Google Scholar 

  • Sundborg Å, Elfström Å, Rudberg S. 1980. Piteälven, Laisälven och Vindelälven. Naturförhållanden och miljöeffekter vid vattenöverledning. Uppsala: UNGI Report No. 51, Uppsala University

  • Suominen O, Danell K, Bryant JP. 1999. Indirect effects of mammalian browsers on vegetation and ground-dwelling insects in an Alaskan floodplain. Ecoscience 6:505–10

    Google Scholar 

  • Surian N, Rinaldi M. 2003. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50:307–26

    Article  Google Scholar 

  • Talbot T, Lapointe M. 2002. Modes of response of a gravel bed river to meander straightening: the case of the Sainte-Marguerite River, Saguenay Region, Quebec, Canada. Water Resour Res 38(6):1073

    Google Scholar 

  • Tikkanen P, Laasonen P, Muotka T, Huhta A, Kuusela K. 1994. Short-term recovery of benthos following disturbance from stream habitat rehabilitation. Hydrobiologia 273:121–30

    Article  Google Scholar 

  • Törnlund E. 1999. Flottning, flottledsbyggnader och förändringar i vattenmiljön: fallstudie för sträckan Storgräsforsen-Storsandforsen i Vindelälven 1850–1970. Umeå (Sweden): Umeå Papers in Economic History 21, Umeå University

  • Törnlund E. 2002. Flottningen dör aldrig: bäckflottningens avveckling efter Ume- ochVindelälven 1945–70. Dissertation. Umeå (Sweden): Umeå University

  • Törnlund E, Östlund L, editors. 2000. Flottning. Vattendraget, arbetet, berättelserna. Skrifter om Skogs- och. Lantbrukshistoria 14:1–203

    Google Scholar 

  • Törnlund E, Östlund L. 2002. The floating of timber in northern Sweden: construction of floatways and transformation of rivers. Environ Hist 8:85–106

    Google Scholar 

  • Turnock D. 1991. Forest exploitation and its impact on transport and settlement in the Romanian Carphatians. J Transp Hist 1:37–60

    Google Scholar 

  • Uehlinger U. 2000. Resistance and resilience of ecosystem metabolism in a flood-prone river system. Freshw Biol 45:319–32

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Can J Fish Aquat Sci 37:130–7

    Article  Google Scholar 

  • Vaux WG. 1968. Intragravel flow and interchange of water in a streambed. US Fish Wild Ser Fish Bull 66:479–89

    Google Scholar 

  • Vervier P, Dobson M, Pinay G. 1993. Role of interaction zones between surface and ground waters in DOC transport and processing: considerations for river restoration. Freshw Biol 29:275–84

    Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–4

    Article  CAS  Google Scholar 

  • Walters CJ. 1986. Issues of adapative management of renewable resources. New York (NY): Macmillan

    Google Scholar 

  • Ward JV, Tockner K, Uehlinger U, Malard F. 2001. Understanding natural patterns and processes in river corridors as the basis for effective river restoration. Reg Rivers Res Manage 17:311–23

    Google Scholar 

  • Williams M. 1989. Americans and their forests: a historical geography. Cambridge (UK): Cambridge University Press

    Google Scholar 

  • Wohl EE. 2001. Virtual rivers: lessons from the mountain rivers of the Colorado Front Range. New Haven (CO): Yale University Press

    Google Scholar 

  • Wondzell SM, Swanson FJ. 1996. Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream: I. hydrologic processes. J N Am Benthol Soc 15:3–19

    Google Scholar 

  • Wood RG. 1971. A history of lumbering in Maine 1820–1861. Orono (ME): University of Maine Press

    Google Scholar 

  • Wörman A, Packman AI, Johansson H, Jonsson K. 2002. Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resour Res 38(1):1001

    Google Scholar 

  • Wyzga B. 2001. A geomorphologist’s criticism of the engineering approach to channelization of gravel-bed rivers: case study of the Raba River, Polish Carpathians. Environ Manage 28:341–58

    Article  PubMed  CAS  Google Scholar 

  • Yearke LW. 1971. River erosion due to channel relocation. Civil Eng 41:39–40

    Google Scholar 

  • Yen B-C. 2002. Open channel resistance. J Hydraul Eng 128:20–39

    Google Scholar 

  • Zhang YX, Malmqvist B, Englund G. 1998. Ecological processes affecting community structure of blackfly larvae in regulated and unregulated rivers: a regional study. J Appl Ecol 35:673–86

    Google Scholar 

  • Zorbidi ZK, 1988. Ecology of early development of the late race of coho salmon Oncorhynchus kisutch. J Ichthyol 28(4):1–6

    Google Scholar 

Download references

AcknowledgEments

The Swedish Environmental Protection Agency through Älvsbyn’s municipality (to C.N.), the Kempe Foundations (to C.N.), and the European Union, Objective 1 (to H.L.) funded this project. We thank Andrew P. Brooks, Phil Roni, Lisa C. Thompson, and an anonymous reviewer for valuable comments on a draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer Nilsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, C., Lepori, F., Malmqvist, B. et al. Forecasting Environmental Responses to Restoration of Rivers Used as Log Floatways: An Interdisciplinary Challenge. Ecosystems 8, 779–800 (2005). https://doi.org/10.1007/s10021-005-0030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-005-0030-9

Keywords

Navigation