Skip to main content
Log in

High Efficiency Precision Grinding of Micro-structured SiC Surface Using Laser Micro-structured Coarse-Grain Diamond Grinding Wheel

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Accompanying with the extensive applications of micro-structured surfaces on hard and brittle material in MEMS and NEMS sensors, optical elements, electronic devices and medical products, efficiently fabricating of these surface has gradually become the focus of manufacturing community. Basing on precision grinding with conditioned and laser micro-structured coarse-grained diamond grinding wheel, a novel high efficiency technique for micro-structured surfaces on hard and brittle material, such as silicon carbide, was developed in this paper. Firstly, the maximum undeformed chip thickness for conditioned coarse-grained wheel and the ductile grinding of silicon carbide was theoretically and experimentally studied. Silicon carbide surface formed mainly in ductile regime was successfully achieved. And then, the strategy for micro-structuring the conditioned wheel with designed micro-structure geometry, sharp edge and small inclination angle side-wall was investigated. Finally, the linear and square micro-structured surfaces with high form accuracy and ultra-precision surface roughness were successfully and efficiently fabricated on silicon carbide by the technique developed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a p :

Grinding depth

v s :

Grinding speed

v w :

Feed rate

N s :

Grinding wheel rotation

C :

Abrasive grain density

b :

Grinding wheel width

V c :

Average material volume per chip

d :

Grinding wheel diameter

d s :

Equivalent wheel diameter

l c :

Cutting chip length

h m :

Maximum undeformed chip thickness

E :

Elastic modulus

H :

Vikers hardness

K IC :

Fracture toughness

d c :

Critical ductile–brittle transition depth

δ 1 :

Overlap ratio of two adjacent lines

Δ 1 :

Laser pulse pitch between two consecutive pulses

Δ 2 :

Laser ablation line pitch

ω 0 :

Laser focus radius

z:

Defocusing quantity

ω z :

Laser spot radius at defocusing quantity z

ω s :

Laser spot radius

Z R :

Rayleigh length

f L :

Laser pulse repetition

θ :

Inclination angle of the abrasive grain side edge

θ 1 :

Estimation of micro-structure side-wall inclination angle

References

  1. Suzuki, H., Furuki, T., Okada, M., Fujii, K., & Goto, T. (2011). Precision cutting of structured ceramic molds with micro PCD milling tool. IJAT, 5(3), 277–282.

    Article  Google Scholar 

  2. Hoffmeister, H.-W., & Wittmer, R. (2009). Grinding hard and brittle materials with cvd-diamond microgrinding wheels. In: ASPE Meet.

  3. Hoffmeister, H.W., & Wenda, A. (2000). Novel grinding tools for machining precision micro parts of hard and brittle materials. In: Proc 15th Ann Meet. ASPE, pp. 152–155.

  4. Wang, R., & Bai, S. (2015). Effect of droplet size on wetting behavior on laser textured SiC surface. Applied Surface Science, 353, 564–567. https://doi.org/10.1016/j.apsusc.2015.06.158.

    Article  Google Scholar 

  5. Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., Song, J.-H., et al. (2014). Hybrid manufacturing in micro/nano scale: A Review. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 75–92. https://doi.org/10.1007/s40684-014-0012-5.

    Article  Google Scholar 

  6. Kim, M., Lee, S. M., Lee, S. J., Kim, Y. W., Liang, L., & Lee, D. W. (2017). Effect on friction reduction of micro/nano hierarchical patterns on sapphire wafers. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 27–35. https://doi.org/10.1007/s40684-017-0004-3.

    Article  Google Scholar 

  7. Zhang, C., Guo, P., Ehmann, K. F., & Li, Y. (2016). Effects of ultrasonic vibrations in micro-groove turning. Ultrasonics, 67, 30–40. https://doi.org/10.1016/j.ultras.2015.12.016.

    Article  Google Scholar 

  8. Guo, P., Lu, Y., Ehmann, K. F., & Cao, J. (2014). Generation of hierarchical micro-structures for anisotropic wetting by elliptical vibration cutting. CIRP Annals, 63(1), 553–556. https://doi.org/10.1016/j.cirp.2014.03.048.

    Article  Google Scholar 

  9. Guo, B., & Zhao, Q. (2017). Ultrasonic vibration assisted grinding of hard and brittle linear micro-structured surfaces. Precision Engineering, 48, 98–106. https://doi.org/10.1016/j.precisioneng.2016.11.009.

    Article  Google Scholar 

  10. Guo, B., Zhao, Q. L., & Jackson, M. J. (2011). Ultrasonic vibration-assisted grinding of micro-structured surfaces on silicon carbide ceramic materials. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(3), 553–559. https://doi.org/10.1177/0954405411423574.

    Article  Google Scholar 

  11. Oh, H.-S., Cho, H.-R., Park, H., Hong, S.-T., & Chun, D.-M. (2016). Study of electrically-assisted indentation for surface texturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(2), 161–165. https://doi.org/10.1007/s40684-016-0020-8.

    Article  Google Scholar 

  12. Zeng, Z., Wang, Y., Wang, Z., Shan, D., & He, X. (2012). A study of micro-EDM and micro-ECM combined milling for 3D metallic micro-structures. Precision Engineering, 36(3), 500–509. https://doi.org/10.1016/j.precisioneng.2012.01.005.

    Article  Google Scholar 

  13. Ma, C. H., Bai, S. X., Peng, X. D., & Meng, Y. G. (2013). Anisotropic wettability of laser micro-grooved SiC surfaces. Applied Surface Science, 284, 930–935. https://doi.org/10.1016/j.apsusc.2013.08.055.

    Article  Google Scholar 

  14. Pecholt, B., Vendan, M., Dong, Y., & Molian, P. (2007). Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication. International Journal of Advanced Manufacturing Technology, 39(3–4), 239–250. https://doi.org/10.1007/s00170-007-1223-5.

    Google Scholar 

  15. Molian, P., Pecholt, B., & Gupta, S. (2009). Picosecond pulsed laser ablation and micromachining of 4H-SiC wafers. Applied Surface Science, 255(8), 4515–4520. https://doi.org/10.1016/j.apsusc.2008.11.071.

    Article  Google Scholar 

  16. Pecholt, B., Gupta, S., & Molian, P. (2011). Review of laser microscale processing of silicon carbide. Journal of Laser Applications, 23(1), 012008. https://doi.org/10.2351/1.3562522.

    Article  Google Scholar 

  17. Xie, J., Zhuo, Y. W., & Tan, T. W. (2011). Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel. Precision Engineering, 35(1), 173–182. https://doi.org/10.1016/j.precisioneng.2010.09.002.

    Article  Google Scholar 

  18. Guo, B., & Zhao, Q. (2015). On-machine dry electric discharge truing of diamond wheels for micro-structured surfaces grinding. International Journal of Advanced Manufacturing Technology, 88, 62–70. https://doi.org/10.1016/j.ijmachtools.2014.09.011.

    Google Scholar 

  19. Guo, B., & Zhao, Q. (2014). Mechanical truing of V-shape diamond wheels for micro-structured surface grinding. International Journal of Advanced Manufacturing Technology, 78(5–8), 1067–1073. https://doi.org/10.1007/s00170-014-6721-7.

    Google Scholar 

  20. Zhao, Q., & Guo, B. (2015). Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 2: Investigation of profile and surface grinding. Precision Engineering, 39, 67–78. https://doi.org/10.1016/j.precisioneng.2014.07.007.

    Article  Google Scholar 

  21. Zhao, Q., & Guo, B. (2015). Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 1: ELID assisted precision conditioning of grinding wheels. Precision Engineering, 39, 56–66. https://doi.org/10.1016/j.precisioneng.2014.07.006.

    Article  Google Scholar 

  22. Wu, M., Guo, B., Zhao, Q., & He, P. (2018). Precision grinding of a microstructured surface on hard and brittle materials by a microstructured coarse-grained diamond grinding wheel. Ceramics International, 44(7), 8026–8034. https://doi.org/10.1016/j.ceramint.2018.01.243.

    Article  Google Scholar 

  23. Zhou, C., Deng, H., & Chen, G. (2016). Study on methods of enhancing the quality, efficiency, and accuracy of pulsed laser profiling. Precision Engineering, 45, 143–152. https://doi.org/10.1016/j.precisioneng.2016.02.005.

    Article  Google Scholar 

  24. Chen, B., Li, S., Deng, Z., Guo, B., & Zhao, Q. (2017). Grinding marks on ultra-precision grinding spherical and aspheric surfaces. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(4), 419–429. https://doi.org/10.1007/s40684-017-0047-5.

    Article  Google Scholar 

  25. Heinzel, C., & Rickens, K. (2009). Engineered wheels for grinding of optical glass. CIRP Annals Manufacturing Technology, 58(1), 315–318. https://doi.org/10.1016/j.cirp.2009.03.096.

    Article  Google Scholar 

  26. Brinksmeier, E., Mutlugünes, Y., Klocke, F., Aurich, J. C., Shore, P., & Ohmori, H. (2010). Ultra-precision grinding. CIRP Annals Manufacturing Technology, 59(2), 652–671. https://doi.org/10.1016/j.cirp.2010.05.001.

    Article  Google Scholar 

  27. Malkin, S., & Guo, C. (2008). Grinding technology: Theory and application of machining with abrasives. New York: Industrial Press Inc.

    Google Scholar 

  28. Vargas, G. E., Wegener, K., Kuster, F., & Schroeter, R. B. (2013). Simulation of the hone broaching process with diamond tools. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(2), 325–333. https://doi.org/10.1007/s40430-013-0085-z.

    Article  Google Scholar 

  29. Bifano, T. G., Dow, T. A., & Scattergood, R. O. (1991). Ductile-Regime grinding: A new technology for machining brittle materials. Journal of Engineering for Industry d-T Asme, 113(2), 184–189.

    Article  Google Scholar 

  30. Hall, D. G. (1996). Vector-beam solutions of Maxwell’s wave equation. Optics Letters, 21(1), 9–11.

    Article  Google Scholar 

  31. Li, H. N., & Axinte, D. (2016). Textured grinding wheels: A review. International Journal of Machine Tools and Manufacture, 109, 8–35. https://doi.org/10.1016/j.ijmachtools.2016.07.001.

    Article  Google Scholar 

  32. Guo, B., Wu, M., Zhao, Q., Liu, H., & Zhang, J. (2018). Improvement of precision grinding performance of CVD diamond wheels by micro-structured surfaces. Ceramics International, 1, 1. https://doi.org/10.1016/j.ceramint.2018.06.197.

    Google Scholar 

Download references

Acknowledgements

This research work is supported by National Natural Science Foundation of China (No. 51405108), National Natural Science Foundation of Heilongjiang Province (No. E2018037) and postdoctoral scientific research developmental fund of Heilongjiang Province (No. LBH-Q17058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Guo, B., Zhao, Q. et al. High Efficiency Precision Grinding of Micro-structured SiC Surface Using Laser Micro-structured Coarse-Grain Diamond Grinding Wheel. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 577–586 (2019). https://doi.org/10.1007/s40684-019-00058-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00058-9

Keywords

Navigation