Skip to main content

Advertisement

Log in

Sex-dependent associations of maternal androgen levels with offspring BMI and weight trajectory from birth to early childhood

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Context

In preclinical studies, high androgen levels during pregnancy are associated with low birth weight and rapid postnatal weight gain in the offspring. However, human data linking prenatal androgens with birth weight and early life weight gain in the offspring are scarce.

Design

We evaluated 516 mother–child pairs enrolled in the New England birth cohorts of the Collaborative Perinatal Project (1959–1966). We assayed androgen bioactivity in maternal sera during third-trimester using a receptor-mediated luciferase expression bioassay. Age and sex-specific BMI Z-scores (BMIz), defined using established standards, were assessed at birth, 4 months, 1 year, 4 years, and 7 years. We used linear mixed models to evaluate the relation of maternal androgens with childhood BMIz overall and by sex. We examined the association of maternal androgens with fetal growth restriction. The association of weight trajectories with maternal androgens was examined using multinomial logistic regression.

Results

Higher maternal androgen levels associated with lower BMIz at birth (β = − 0.39, 95% CI: − 0.73, − 0.06); this relation was sex-dependent, such that maternal androgens significantly associated with BMIz at birth in girls alone (β = − 0.72, 95% CI: − 1.40, − 0.04). The relation of maternal androgens with fetal growth restriction revealed dose threshold effects that differed by sex. There was no significant association between maternal androgens and weight trajectory overall. However, we found a significant sex interaction (p = 0.01); higher maternal androgen levels associated with accelerated catch-up growth in boys (aOR = 2.14, 95% CI: 1.14, 4.03).

Conclusion

Our findings provide evidence that maternal androgens may have differential effects on the programming of intrauterine growth and postnatal weight gain depending on fetal sex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ozanne SE (2001) Metabolic programming in animals. Br Med Bull 60:143–152

    Article  CAS  PubMed  Google Scholar 

  2. Barker DJ (2004) The developmental origins of chronic adult disease. Acta Paediatr 93(446):26–33

    CAS  Google Scholar 

  3. Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ (2019) Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology 44(1):59–70. https://doi.org/10.1038/s41386-018-0146-1

    Article  PubMed  Google Scholar 

  4. Stavreva DA, George AA, Klausmeyer P, Varticovski L, Sack D, Voss TC, Schiltz RL, Blazer VS, Iwanowicz LR, Hager GL (2012) Prevalent glucocorticoid and androgen activity in US water sources. Sci Rep 2:937. https://doi.org/10.1038/srep00937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho J, Holditch-Davis D (2014) Effects of perinatal testosterone on infant health, mother-infant interactions, and infant development. Biol Res Nurs 16(2):228–236. https://doi.org/10.1177/1099800413486340

    Article  PubMed  Google Scholar 

  6. Bruns CM, Baum ST, Colman RJ, Eisner JR, Kemnitz JW, Weindruch R, Abbott DH (2004) Insulin resistance and impaired insulin secretion in prenatally androgenized male rhesus monkeys. J Clin Endocrinol Metab 89(12):6218–6223. https://doi.org/10.1210/jc.2004-0918

    Article  CAS  PubMed  Google Scholar 

  7. Eisner JR, Dumesic DA, Kemnitz JW, Abbott DH (2000) Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. J Clin Endocrinol Metab 85(3):1206–1210. https://doi.org/10.1210/jcem.85.3.6453

    Article  CAS  PubMed  Google Scholar 

  8. Huang G, Cherkerzian S, Loucks EB, Buka SL, Handa RJ, Lasley BL, Bhasin S, Goldstein JM (2018) Sex differences in the prenatal programming of adult metabolic syndrome by maternal androgens. J Clin Endocrinol Metab 103(11):3945–3953. https://doi.org/10.1210/jc.2018-01243

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ong KK, Dunger DB (2002) Perinatal growth failure: the road to obesity, insulin resistance and cardiovascular disease in adults. Best Pract Res Clin Endocrinol Metab 16(2):191–207. https://doi.org/10.1053/beem.2002.0195

    Article  PubMed  Google Scholar 

  10. Jornayvaz FR, Vollenweider P, Bochud M, Mooser V, Waeber G, Marques-Vidal P (2016) Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study. Cardiovasc Diabetol 15:73. https://doi.org/10.1186/s12933-016-0389-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fall CH, Osmond C, Barker DJ, Clark PM, Hales CN, Stirling Y, Meade TW (1995) Fetal and infant growth and cardiovascular risk factors in women. BMJ 310(6977):428–432. https://doi.org/10.1136/bmj.310.6977.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lauren L, Jarvelin MR, Elliott P, Sovio U, Spellman A, McCarthy M, Emmett P, Rogers I, Hartikainen AL, Pouta A, Hardy R, Wadsworth M, Helmsdal G, Olsen S, Bakoula C, Lekea V, Millwood I (2003) Relationship between birthweight and blood lipid concentrations in later life: evidence from the existing literature. Int J Epidemiol 32(5):862–876. https://doi.org/10.1093/ije/dyg201

    Article  PubMed  Google Scholar 

  13. Mi J, Law C, Zhang KL, Osmond C, Stein C, Barker D (2000) Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann Intern Med 132(4):253–260. https://doi.org/10.7326/0003-4819-132-4-200002150-00002

    Article  CAS  PubMed  Google Scholar 

  14. Eriksson JG, Forsen T, Tuomilehto J, Jaddoe VW, Osmond C, Barker DJ (2002) Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia 45(3):342–348. https://doi.org/10.1007/s00125-001-0757-6

    Article  CAS  PubMed  Google Scholar 

  15. Forsen T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D (2000) The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 133(3):176–182. https://doi.org/10.7326/0003-4819-133-3-200008010-00008

    Article  CAS  PubMed  Google Scholar 

  16. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB (2000) Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ 320(7240):967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V (2005) Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology 146(7):3185–3193. https://doi.org/10.1210/en.2004-1444

    Article  CAS  PubMed  Google Scholar 

  18. Sathishkumar K, Elkins R, Chinnathambi V, Gao H, Hankins GD, Yallampalli C (2011) Prenatal testosterone-induced fetal growth restriction is associated with down-regulation of rat placental amino acid transport. Reprod Biol Endocrinol RB&E 9:110. https://doi.org/10.1186/1477-7827-9-110

    Article  CAS  Google Scholar 

  19. Sathishkumar K, Elkins R, Yallampalli U, Balakrishnan M, Yallampalli C (2011) Fetal programming of adult hypertension in female rat offspring exposed to androgens in utero. Early Human Dev 87(6):407–414. https://doi.org/10.1016/j.earlhumdev.2011.03.001

    Article  CAS  Google Scholar 

  20. Manikkam M, Crespi EJ, Doop DD, Herkimer C, Lee JS, Yu S, Brown MB, Foster DL, Padmanabhan V (2004) Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology 145(2):790–798. https://doi.org/10.1210/en.2003-0478

    Article  CAS  PubMed  Google Scholar 

  21. Wolf CJ, Hotchkiss A, Ostby JS, LeBlanc GA, Gray LE Jr (2002) Effects of prenatal testosterone propionate on the sexual development of male and female rats: a dose-response study. Toxicol Sci Off J Soc Toxicol 65(1):71–86

    Article  CAS  Google Scholar 

  22. Sir-Petermann T, Hitchsfeld C, Maliqueo M, Codner E, Echiburu B, Gazitua R, Recabarren S, Cassorla F (2005) Birth weight in offspring of mothers with polycystic ovarian syndrome. Hum Reprod 20(8):2122–2126. https://doi.org/10.1093/humrep/dei009

    Article  PubMed  Google Scholar 

  23. Bastek JA, Pare E, Wang E, Elovitz MA, Srinivas SK (2009) Limitations of ultrasound in diagnosing intrauterine growth restriction in severe preeclampsia. J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet 22(11):1039–1044. https://doi.org/10.3109/14767050903029584

    Article  Google Scholar 

  24. Recabarren SE, Smith R, Rios R, Maliqueo M, Echiburu B, Codner E, Cassorla F, Rojas P, Sir-Petermann T (2008) Metabolic profile in sons of women with polycystic ovary syndrome. J Clin Endocrinol Metab 93(5):1820–1826. https://doi.org/10.1210/jc.2007-2256

    Article  CAS  PubMed  Google Scholar 

  25. Torchen LC, Idkowiak J, Fogel NR, O'Neil DM, Shackleton CH, Arlt W, Dunaif A (2016) Evidence for increased 5alpha-reductase activity during early childhood in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab 101(5):2069–2075. https://doi.org/10.1210/jc.2015-3926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krone N, Wachter I, Stefanidou M, Roscher AA, Schwarz HP (2001) Mothers with congenital adrenal hyperplasia and their children: outcome of pregnancy, birth and childhood. Clin Endocrinol (Oxf) 55(4):523–529. https://doi.org/10.1046/j.1365-2265.2001.01359.x

    Article  CAS  Google Scholar 

  27. Remde H, Zopf K, Schwander J, Quinkler M (2016) Fertility and pregnancy in primary adrenal insufficiency in Germany. Horm Metab Res 48(5):306–311. https://doi.org/10.1055/s-0035-1565183

    Article  CAS  PubMed  Google Scholar 

  28. Reisch N (2019) Pregnancy in congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 48(3):619–641. https://doi.org/10.1016/j.ecl.2019.05.011

    Article  PubMed  Google Scholar 

  29. Lo JC, Schwitzgebel VM, Tyrrell JB, Fitzgerald PA, Kaplan SL, Conte FA, Grumbach MM (1999) Normal female infants born of mothers with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 84(3):930–936. https://doi.org/10.1210/jcem.84.3.5565

    Article  CAS  PubMed  Google Scholar 

  30. Hagenfeldt K, Janson PO, Holmdahl G, Falhammar H, Filipsson H, Frisen L, Thoren M, Nordenskjold A (2008) Fertility and pregnancy outcome in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum Reprod 23(7):1607–1613. https://doi.org/10.1093/humrep/den118

    Article  CAS  PubMed  Google Scholar 

  31. Reynolds RM, Seckl JR (2012) Antenatal glucocorticoid treatment: are we doing harm to term babies? J Clin Endocrinol Metab 97(10):3457–3459. https://doi.org/10.1210/jc.2012-3201

    Article  CAS  PubMed  Google Scholar 

  32. Takishima S, Nakajima K, Nomura R, Tsuji-Hosokawa A, Matsuda N, Matsubara Y, Ono M, Miyai K, Takasawa K, Morio T, Hasegawa Y, Kashimada K (2016) Lower body weight and BMI at birth were associated with early adiposity rebound in 21-hydroxylase deficiency patients. Endocr J 63(11):983–990. https://doi.org/10.1507/endocrj.EJ16-0194

    Article  CAS  PubMed  Google Scholar 

  33. Kung KTF, Spencer D, Pasterski V, Neufeld SAS, Hindmarsh PC, Hughes IA, Acerini CL, Hines M (2018) Emotional and behavioral adjustment in 4 to 11-year-old boys and girls with classic congenital adrenal hyperplasia and unaffected siblings. Psychoneuroendocrinology 97:104–110. https://doi.org/10.1016/j.psyneuen.2018.07.004

    Article  PubMed  Google Scholar 

  34. Sathishkumar K, Balakrishnan M, Chinnathambi V, Chauhan M, Hankins GD, Yallampalli C (2012) Fetal sex-related dysregulation in testosterone production and their receptor expression in the human placenta with preeclampsia. J Perinatol 32(5):328–335. https://doi.org/10.1038/jp.2011.101

    Article  CAS  PubMed  Google Scholar 

  35. Susser E, Buka S, Schaefer CA, Andrews H, Cirillo PM, Factor-Litvak P, Gillman M, Goldstein JM, Henry PI, Lumey LH, McKeague IW, Michels KB, Terry MB, Cohn BA, for the EDAH Team (2011) The early determinants of adult health study. J Dev Origins Health Dis 2(6):311–321

    Article  CAS  Google Scholar 

  36. Niswander KRG (1972) The collaborative perinatal study of the national institute of neurological diseases and stroke: the women and their pregnancies. Department of health, Education and Welfare, Washington

    Google Scholar 

  37. Goldstein JM, Buka SL, Seidman LJ, Tsuang MT (2010) Specificity of familial transmission of schizophrenia psychosis spectrum and affective psychoses in the New England family study’s high-risk design. Arch Gen Psychiatry 67(5):458–467. https://doi.org/10.1001/archgenpsychiatry.2010.38

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ellman LM, Schetter CD, Hobel CJ, Chicz-Demet A, Glynn LM, Sandman CA (2008) Timing of fetal exposure to stress hormones: effects on newborn physical and neuromuscular maturation. Dev Psychobiol 50(3):232–241. https://doi.org/10.1002/dev.20293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yeh S, Chang C (1996) Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 93(11):5517–5521. https://doi.org/10.1073/pnas.93.11.5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen J, Sowers MR, Moran FM, McConnell DS, Gee NA, Greendale GA, Whitehead C, Kasim-Karakas SE, Lasley BL (2006) Circulating bioactive androgens in midlife women. J Clin Endocrinol Metab 91(11):4387–4394. https://doi.org/10.1210/jc.2006-0284

    Article  CAS  PubMed  Google Scholar 

  41. de Onis M, Habicht JP (1996) Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr 64(4):650–658. https://doi.org/10.1093/ajcn/64.4.650

    Article  PubMed  Google Scholar 

  42. Grummer-Strawn LM, Reinold C, Krebs NF, Centers for Disease C, Prevention (2010) Use of World Health Organization and CDC growth charts for children aged 0–59 months in the United States. MMWR Recomm Rep 59(RR-9):1–15

    PubMed  Google Scholar 

  43. Oken E, Kleinman KP, Rich-Edwards J, Gillman MW (2003) A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatr 3:6. https://doi.org/10.1186/1471-2431-3-6

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nagin DS, Odgers CL (2010) Group-based trajectory modeling in clinical research. Annu Rev Clin Psychol 6:109–138. https://doi.org/10.1146/annurev.clinpsy.121208.131413

    Article  PubMed  Google Scholar 

  45. Nagin DS (2005) Group based modeling of development. Harvard University Press, Cambridge

    Book  Google Scholar 

  46. van de Schoot RSM, Winter SD, Depaoli S, Vermunt JK (2017) The GRoLTS-checklist: guidelines for reporting on latent trajectory studies. Struct Equ Model Multidiscip J 24(3):451–467

    Article  Google Scholar 

  47. Jones BLND, Roeder K (2001) A SAS procedure based on mixture models for estimating developmental trajectories. Sociol Methods Res 29:374–393

    Article  Google Scholar 

  48. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, Mei Z, Curtin LR, Roche AF, Johnson CL (2000) CDC growth charts: United States. Adv Data 314:1–27

    Google Scholar 

  49. de Zegher F, Devlieger H, Eeckels R (1999) Fetal growth: boys before girls. Horm Res 51(5):258–259. https://doi.org/10.1159/000023382

    Article  PubMed  Google Scholar 

  50. Makieva S, Saunders PT, Norman JE (2014) Androgens in pregnancy: roles in parturition. Human Reprod Update 20(4):542–559. https://doi.org/10.1093/humupd/dmu008

    Article  CAS  Google Scholar 

  51. Hotchkiss AK, Lambright CS, Ostby JS, Parks-Saldutti L, Vandenbergh JG, Gray LE Jr (2007) Prenatal testosterone exposure permanently masculinizes anogenital distance, nipple development, and reproductive tract morphology in female Sprague-Dawley rats. Toxicol Sci Off J Soc Toxicol 96(2):335–345. https://doi.org/10.1093/toxsci/kfm002

    Article  CAS  Google Scholar 

  52. Serin IS, Kula M, Basbug M, Unluhizarci K, Gucer S, Tayyar M (2001) Androgen levels of preeclamptic patients in the third trimester of pregnancy and six weeks after delivery. Acta Obstet Gynecol Scand 80(11):1009–1013

    Article  CAS  PubMed  Google Scholar 

  53. Salamalekis E, Bakas P, Vitoratos N, Eleptheriadis M, Creatsas G (2006) Androgen levels in the third trimester of pregnancy in patients with preeclampsia. Eur J Obstet Gynecol Reprod Biol 126(1):16–19. https://doi.org/10.1016/j.ejogrb.2005.07.007

    Article  CAS  PubMed  Google Scholar 

  54. Carlsen SM, Jacobsen G, Romundstad P (2006) Maternal testosterone levels during pregnancy are associated with offspring size at birth. Eur J Endocrinol Eur Fed Endocrine Soc 155(2):365–370. https://doi.org/10.1530/eje.1.02200

    Article  CAS  Google Scholar 

  55. Voegtline KM, Costigan KA, Kivlighan KT, Henderson JL, DiPietro JA (2013) Sex-specific associations of maternal prenatal testosterone levels with birth weight and weight gain in infancy. J Dev Orig Health Dis 4(4):280–284. https://doi.org/10.1017/S2040174413000135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Padmanabhan V, Veiga-Lopez A, Abbott DH, Recabarren SE, Herkimer C (2010) Developmental programming: impact of prenatal testosterone excess and postnatal weight gain on insulin sensitivity index and transfer of traits to offspring of overweight females. Endocrinology 151(2):595–605. https://doi.org/10.1210/en.2009-1015

    Article  CAS  PubMed  Google Scholar 

  57. Gilman SE, Cherkerzian S, Buka SL, Hahn J, Hornig M, Goldstein JM (2016) Prenatal immune programming of the sex-dependent risk for major depression. Trans Psychiatry 6(5):e822. https://doi.org/10.1038/tp.2016.91

    Article  CAS  Google Scholar 

  58. Stettler N, Zemel BS, Kumanyika S, Stallings VA (2002) Infant weight gain and childhood overweight status in a multicenter, cohort study. Pediatrics 109(2):194–199. https://doi.org/10.1542/peds.109.2.194

    Article  PubMed  Google Scholar 

  59. Eriksson JG, Forsen TJ (2002) Childhood growth and coronary heart disease in later life. Ann Med 34(3):157–161

    Article  PubMed  Google Scholar 

  60. Holt RI (2002) Fetal programming of the growth hormone-insulin-like growth factor axis. Trends Endocrinol Metab 13(9):392–397. https://doi.org/10.1016/s1043-2760(02)00697-5

    Article  CAS  PubMed  Google Scholar 

  61. Crespi EJ, Steckler TL, Mohankumar PS, Padmanabhan V (2006) Prenatal exposure to excess testosterone modifies the developmental trajectory of the insulin-like growth factor system in female sheep. J Physiol 572(Pt 1):119–130. https://doi.org/10.1113/jphysiol.2005.103929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carbone DL, Zuloaga DG, Hiroi R, Foradori CD, Legare ME, Handa RJ (2012) Prenatal dexamethasone exposure potentiates diet-induced hepatosteatosis and decreases plasma IGF-I in a sex-specific fashion. Endocrinology 153(1):295–306. https://doi.org/10.1210/en.2011-1601

    Article  CAS  PubMed  Google Scholar 

  63. Hsu TY, Lan KC, Tsai CC, Ou CY, Cheng BH, Tsai MY, Kang HY, Tung YH, Wong YH, Huang KE (2009) Expression of androgen receptor in human placentas from normal and preeclamptic pregnancies. Taiwan J Obstet Gynecol 48(3):262–267. https://doi.org/10.1016/S1028-4559(09)60301-6

    Article  PubMed  Google Scholar 

  64. Gopalakrishnan K, Mishra JS, Chinnathambi V, Vincent KL, Patrikeev I, Motamedi M, Saade GR, Hankins GD, Sathishkumar K (2016) Elevated testosterone reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant rats. Hypertension 67(3):630–639. https://doi.org/10.1161/HYPERTENSIONAHA.115.06946

    Article  CAS  PubMed  Google Scholar 

  65. Carlson HE (2007) Human adrenal cortex hyperfunction due to LH/hCG. Mol Cell Endocrinol 269(1–2):46–50. https://doi.org/10.1016/j.mce.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  66. Moran FM, Chen J, Gee NA, Lohstroh PN, Lasley BL (2013) Dehydroepiandrosterone sulfate levels reflect endogenous luteinizing hormone production and response to human chorionic gonadotropin challenge in older female macaque (Macaca fascicularis). Menopause 20(3):329–335. https://doi.org/10.1097/GME.0b013e3182698f80

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stroud LR, Solomon C, Shenassa E, Papandonatos G, Niaura R, Lipsitt LP, Lewinn K, Buka SL (2007) Long-term stability of maternal prenatal steroid hormones from the National Collaborative Perinatal Project: still valid after all these years. Psychoneuroendocrinology 32(2):140–150. https://doi.org/10.1016/j.psyneuen.2006.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Furui T, Imai A, Ohno T (2007) Pre-term labour in cases with high maternal testosterone levels. J Obstet Gynaecol J Inst Obstet Gynaecol 27(2):155–156. https://doi.org/10.1080/01443610601113979

    Article  CAS  Google Scholar 

  69. von Hippel PT, Nahhas RW (2013) Extending the history of child obesity in the United States: the Fels longitudinal study, birth years 1930–1993. Obesity (Silver Spring) 21(10):2153–2156. https://doi.org/10.1002/oby.20395

    Article  Google Scholar 

  70. Skinner AC, Ravanbakht SN, Skelton JA, Perrin EM, Armstrong SC (2018) Prevalence of obesity and severe obesity in US children, 1999–2016. Pediatrics. https://doi.org/10.1542/peds.2017-3459

    Article  PubMed  Google Scholar 

  71. Phipps SA, Burton PS, Osberg LS, Lethbridge LN (2006) Poverty and the extent of child obesity in Canada, Norway and the United States. Obes Rev 7(1):5–12. https://doi.org/10.1111/j.1467-789X.2006.00217.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Anne Remington for help with project management. We also thank Nancy Gee at U.C. Davis with Dr. Lasley’s laboratory for performing the bioactive androgen assays for this study.

Funding

National Institute of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI) K08 HL132122-02 (Huang, PI); State of Arizona Arizona Biomedical Research Commission (ABRC) ADHS14-00003606 (Handa/Goldstein, PIs), NIMH-NHLBI R01MH074679 (Goldstein, PI), NIA RC2AG036666 (Loucks and Buka, PIs), and NIA R01AG023397 (Buka, PI). Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Gilman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Huang.

Ethics declarations

Conflict of interest

Shalender Bhasin (SB) has received research grant support from Abbvie Pharmaceuticals, Transition Therapeutics, and Metro International Biotechnology, LLC for investigator-initiated research unrelated to this study. SB has served as a consultant to AbbVie and Novartis. SB has a financial interest in Function Promoting Therapies, LLC, a company aiming to develop innovative solutions that enhance precision and accuracy in clinical decision-making and facilitate personalized therapeutic choices in reproductive health. SB’s interests were reviewed and are managed by Brigham and Women’s Hospital and Partners HealthCare in accordance with their conflict of interest policies. Dr. Goldstein is on the scientific advisory board for and has equity in Cala Health. However, this study has no relationship to the work in Cala Health. The rest of the authors have no conflicts of interest to disclose.

Ethical approval

The study protocol was approved by the institutional review boards at Partners HealthCare system and Brown University.

Informed consent

All participants provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Aroner, S., Bay, C. et al. Sex-dependent associations of maternal androgen levels with offspring BMI and weight trajectory from birth to early childhood. J Endocrinol Invest 44, 851–863 (2021). https://doi.org/10.1007/s40618-020-01385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01385-4

Keywords

Navigation