Skip to main content
Log in

Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems

  • Published:
Metallurgical and Materials Transactions E

Abstract

This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Liu, X. Yan, G. Chen, Z. Ren, Nano Energy 1, 42–56 (2015)

    Article  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    Article  Google Scholar 

  3. L.W. da Silva, M. Kaviany, Int. J. Heat Mass Trans. 47, 2417–2435 (2004)

    Article  Google Scholar 

  4. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Calliat, Int. Mater. Rev. 48(1), 45–66 (2003)

    Article  Google Scholar 

  5. S.W. Chen, C.Y. Wu, H.J. Wu, W.-T. Chiu, J. Alloy. Compd. 611, 313–318 (2014)

    Article  Google Scholar 

  6. F.J. Manjon, R. Vilaplana, O. Gomis, E. Perez-Gonzalez, D. Santamarıa-Perez, V. Marın-Borras, A. Segura, J. Gonzalez, P. Rodrıguez-Hernandez, A. Munoz, C. Drasar, V. Kucek, V. Munoz-Sanjose, Phys. Status Solidi. B 250(4), 669–676 (2013)

    Article  Google Scholar 

  7. S.W. Chen, H.J. Wu, C.Y. Wu, C.F. Chang, C.Y. Chen, J. Alloy. Compd. 553, 106–112 (2013)

    Article  Google Scholar 

  8. Y. Ma, W. Wijesekara, A.E.C. Palmqvist, J. Electron Mater. 41(6), 1138–1146 (2012)

    Article  Google Scholar 

  9. Y. Du, K.F. Cai, H. Li, B.J. An, J. Electron Mater. 40(5), 518–522 (2011)

    Article  Google Scholar 

  10. N. Keawprak, S. Lao-ubol, C. Eamchotchawalit, Z.M. Sun, J. Alloy. Compd. 509, 9296–9301 (2011)

    Article  Google Scholar 

  11. X. Duan, K. Hu, S. Ding, D. Man, H. Jin, Prog. Nat. Sci. 25, 29–33 (2015)

    Article  Google Scholar 

  12. V. A. Kulbachinskii, V. G. Kytin, A. A. Kudryashov, and P. M. Tarasov: 9th European Conference on Thermoelectrics, AIP Conf. Proc., vol. 1449, pp. 119–22, 2012

  13. D. Zhao, M. Zuo, H. Geng, Intermetallics 31, 321–324 (2012)

    Article  Google Scholar 

  14. V. A. Kulbachinskii, A. V. G. Kytin, and P. M. Tarasov: International Conference on Thermoelectrics, IEEE proceedings, pp. 459–64, 2006

  15. C.H. Liu, H.J. Wu, S.W. Chen, Metall. Mater. Trans. A 44A, 5424–5433 (2013)

    Article  Google Scholar 

  16. T. Caillat, M. Carle, D. Perrin, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids 53(2), 227–232 (1992)

    Article  Google Scholar 

  17. M.G. Shakhbazov, N.A. Seidova, P.G. Rustamov, Russ. J. Inorg. Chem. 22(9), 1377–1381 (1977)

    Google Scholar 

  18. P.G. Rustamov, N.A. Seidova, M.G. Shakhbazov, Russ. J. Inorg. Chem. 21(9), 412–415 (1976)

    Google Scholar 

  19. K. Dobletov, N.K. Samakhotina, A.V. Anikin, A. Ashirov, Inorg. Mater. 11, 1036–1038 (1975)

    Google Scholar 

  20. H.G. Bouanani, D. Eddike, B. Liautard, G. Brun, Mater. Res. Bull. 31, 177–187 (1996)

    Article  Google Scholar 

  21. V.F. Bankina, N.K. Abrikosov, J. Inorg. Chem. 9, 509–512 (1964)

    Google Scholar 

  22. J.P. McHugh, W.A. Tiller, Trans. Metall. Soc. AIME 215, 651–655 (1959)

    Google Scholar 

  23. J.F. Dumas, G. Brun, B. Liautard, J.C. Tédenac, M. Maurin, Thermochim. Acta 122, 135–141 (1987)

    Article  Google Scholar 

  24. R. Eholié, J. Flahaut, Bull. Soc. Chim. FR. 4, 1250–1254 (1972)

    Google Scholar 

  25. P. G. Rustamov, N. A. Seidova. (1968). Azerbaidzhanskii Khimicheskii Zhurnal, 77–80

  26. H. Okamoto, Binary Alloy Phase Diagrams, 2nd edition, vol. 1 (ASM International, Materials Park, 1990), pp. 738–739

    Google Scholar 

  27. H. Okamoto, Binary Alloy Phase Diagrams, 2nd edition, vol. 2 (ASM International, Materials Park, 1990), pp. 1852–1854

    Google Scholar 

  28. H. Okamoto, Binary Alloy Phase Diagrams, 2nd edition, vol. 2 (ASM International, Materials Park, 1990), pp. 790–792

    Google Scholar 

  29. J.J. Zhang, G.Q. Huang, Solid State Commun. 197, 34–39 (2014)

    Article  Google Scholar 

  30. H. Okamoto, L.E. Tanner, Binary Alloy Phase Diagrams, 2 nd edition, vol. 1 (ASM International, Materials Park, 1990), pp. 800–801

    Google Scholar 

  31. I. Ohnuma, T. Saegusa, Y. Takaku, C.P. Wang, X.J. Liu, R. Kainuma, K. Ishida, J. Electron Mater. 38(1), 2–9 (2009)

    Article  Google Scholar 

  32. G. Ghosh, R.C. Sharma, D.T. Li, Y.A. Chang, J. Phase Equilib. 15(2), 213–224 (1994)

    Article  Google Scholar 

  33. J.W.G. Bos, F. Faucheux, R.A. Downie, A. Marcinkova, J. Solid State Chem. 193, 13–18 (2012)

    Article  Google Scholar 

  34. H.J. Wu, S.W. Chen, J. Alloy. Compd. 509, 656–658 (2011)

    Article  Google Scholar 

  35. S.W. Chen, H.J. Wu, J. Alloy. Compd. 497, 110–117 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Materials & Chemical Research Laboratories of ITRI and the Ministry of Science and Technology in Taiwan (NSC103-2923-E-007-002-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinn-wen Chen.

Additional information

Manuscript submitted January 6, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Ph., Chen, Sw., Hwang, Jd. et al. Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems. Metallurgical and Materials Transactions E 3, 281–290 (2016). https://doi.org/10.1007/s40553-016-0090-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-016-0090-0

Keywords

Navigation