Skip to main content

Advertisement

Log in

What’s New in the Diagnosis and Treatment of Orthopedic Prostheses-Related Infections

  • Treatment and Prevention of Hospital Infections (D Vilar-Compte, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Opinion statement

Periprosthetic joint infection (PJI) is one of the leading cause of failure in prosthetic joint surgery regardless the implantation site, causing an important burden to hospitals and society. Diagnosis is challenging, as there is lack of a gold standard test. When it is diagnosed within 30 days of onset or if the etiology is hematogenous with either a susceptible or non-virulent microorganism, the recommended surgical management option is debridement and irrigation, followed with antimicrobial treatment in order to preserve the device, with different reported success rates. In those cases of delayed and late onset presentation, there are two treatment possibilities: (a) Two-stage exchange arthroplasty, the most common surgical procedure for the management of PJI. Once prosthesis is removed it is followed by pathogen-specific antimicrobial treatment. A period of 2–4 weeks without antimicrobial before reimplantation procedure is suggested. (b) One-stage exchange arthroplasty is considered in case of a known microorganism that is susceptible with effective antimicrobial options and lack of sepsis. In terms of antimicrobial treatment, length of intravenous antibiotics is at surgeon’s discretion because there is not a standard recommendation. Switching from intravenous to oral antimicrobial treatment reduces the hospital length of stay and health-care expenditures. Oral antimicrobial treatment length recommendation is variable, which can be from 2 to 6 weeks to 3–6 months. Suppressive antimicrobials for a long-term are an option when prostheses retention is decided because there is a high surgical risk, poor functional outcomes, and patient preferences. PJIs are ideally treated in referral hospitals with an experienced multidisciplinary team.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Readings

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Parvizi J, et al. Periprosthetic joint infection: the economic impact of methicillin-resistant infections. J Arthroplast. 2010;25(6 Suppl):103–7.

    Article  Google Scholar 

  2. Osmon DR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):e1–e25.

    Article  PubMed  Google Scholar 

  3. •• Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014;27(2):302–45. Excellent review about PJI. The authors discuss diagnosis, treatment and prevention in detail

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kurtz SM, et al. Economic burden of periprosthetic joint infection in the United States. J Arthroplast. 2012;27(8 Suppl):61–5. e1

    Article  Google Scholar 

  5. Bozic KJ, et al. The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res. 2010;468(1):45–51.

    Article  PubMed  Google Scholar 

  6. Klouche S, Sariali E, Mamoudy P. Total hip arthroplasty revision due to infection: a cost analysis approach. Orthop Traumatol Surg Res. 2010;96(2):124–32.

    Article  CAS  PubMed  Google Scholar 

  7. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351(16):1645–54.

    Article  CAS  PubMed  Google Scholar 

  8. Parvizi J, Gehrke T, Chen AF. Proceedings of the International consensus on Periprosthetic joint infection. Bone Joint J. 2013;95-B(11):1450–2.

    Article  CAS  PubMed  Google Scholar 

  9. Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiens JR, et al. Iron-regulated expression of alginate production, mucoid phenotype, and biofilm formation by pseudomonas aeruginosa. MBio. 2014;5(1):e01010–3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther. 2007;82(2):204–9.

    Article  PubMed  Google Scholar 

  13. •• Kapadia BH, et al. Periprosthetic joint infection. Lancet. 2016;387(10016):386–94. Excellent review about PJI. The authors give an overview of the pathogenesis, prevention and treatment

    Article  PubMed  Google Scholar 

  14. Aboltins C, et al. Current concepts in the management of prosthetic joint infection. Intern Med J. 2014;44(9):834–40.

    Article  CAS  PubMed  Google Scholar 

  15. Parvizi J, et al. New definition for periprosthetic joint infection: from the workgroup of the musculoskeletal infection society. Clin Orthop Relat Res. 2011;469(11):2992–4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. • Minassian AM, Osmon DR, Berendt AR. Clinical guidelines in the management of prosthetic joint infection. J Antimicrob Chemother. 2014;69(Suppl 1):i29–35. Clinical guideline. The authors give useful treatment algorithms

    Article  CAS  PubMed  Google Scholar 

  17. Austin MS, et al. A simple, cost-effective screening protocol to rule out periprosthetic infection. J Arthroplast. 2008;23(1):65–8.

    Article  Google Scholar 

  18. Berbari E, et al. Inflammatory blood laboratory levels as markers of prosthetic joint infection: a systematic review and meta-analysis. J Bone Joint Surg Am. 2010;92(11):2102–9.

    Article  PubMed  Google Scholar 

  19. •• Parvizi J, Fassihi SC, Enayatollahi MA. Diagnosis of Periprosthetic joint infection following hip and knee arthroplasty. Orthop Clin North Am. 2016;47(3):505–15. Very useful article showing a complete diagnosis approach. The authors propose a diagnostic algorithm. Include alpha-defensing and interleukin-6 as potential diagnostic biomarkers

    Article  PubMed  Google Scholar 

  20. Parvizi J, et al. Diagnosis of periprosthetic joint infection: the utility of a simple yet unappreciated enzyme. J Bone Joint Surg Am. 2011;93(24):2242–8.

    Article  PubMed  Google Scholar 

  21. Aggarwal VK, et al. Leukocyte esterase from synovial fluid aspirate: a technical note. J Arthroplast. 2013;28(1):193–5.

    Article  Google Scholar 

  22. Schinsky MF, et al. Perioperative testing for joint infection in patients undergoing revision total hip arthroplasty. J Bone Joint Surg Am. 2008;90(9):1869–75.

    Article  PubMed  Google Scholar 

  23. Trampuz A, et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med. 2007;357(7):654–63.

    Article  CAS  PubMed  Google Scholar 

  24. Marin M, et al. Role of universal 16S rRNA gene PCR and sequencing in diagnosis of prosthetic joint infection. J Clin Microbiol. 2012;50(3):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. • Drago L, et al. Prolonging culture to 15 days improves bacterial detection in bone and joint infections. Eur J Clin Microbiol Infect Dis. 2015;34(9):1809–13. The authors show that for etiological diagnosis cultures must be kept up to 15 days

    Article  CAS  PubMed  Google Scholar 

  26. Deirmengian C, et al. Diagnosing periprosthetic joint infection: has the era of the biomarker arrived? Clin Orthop Relat Res. 2014;472(11):3254–62.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deirmengian C, et al. The alpha-defensin test for periprosthetic joint infection outperforms the leukocyte esterase test strip. Clin Orthop Relat Res. 2015;473(1):198–203.

    Article  PubMed  Google Scholar 

  28. Oliva A, et al. Role of sonication in the microbiological diagnosis of implant-associated infections: beyond the orthopedic prosthesis. Adv Exp Med Biol. 2016;897:85–102.

    Article  PubMed  Google Scholar 

  29. Nguyen LL, et al. Detecting bacterial colonization of implanted orthopaedic devices by ultrasonication. Clin Orthop Relat Res. 2002;403:29–37.

    Article  Google Scholar 

  30. Trampuz A, et al. Sonication of explanted prosthetic components in bags for diagnosis of prosthetic joint infection is associated with risk of contamination. J Clin Microbiol. 2006;44(2):628–31.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Esteban J, et al. Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. J Clin Microbiol. 2008;46(2):488–92.

    Article  PubMed  Google Scholar 

  32. Achermann Y, et al. Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. J Clin Microbiol. 2010;48(4):1208–14.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Holinka J, et al. Sonication cultures of explanted components as an add-on test to routinely conducted microbiological diagnostics improve pathogen detection. J Orthop Res. 2011;29(4):617–22.

    Article  PubMed  Google Scholar 

  34. Portillo ME, et al. Sonication versus vortexing of implants for diagnosis of prosthetic joint infection. J Clin Microbiol. 2013;51(2):591–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Piper KE, et al. Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. J Clin Microbiol. 2009;47(6):1878–84.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gomez E, et al. Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J Clin Microbiol. 2012;50(11):3501–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Esteban J, et al. PCR-hybridization after sonication improves diagnosis of implant-related infection. Acta Orthop. 2012;83(3):299–304.

    Article  PubMed  PubMed Central  Google Scholar 

  38. • Borde JP, et al. Diagnosis of prosthetic joint infections using UMD-universal kit and the automated multiplex-PCR Unyvero i60 ITI((R)) cartridge system: a pilot study. Infection. 2015;43(5):551–60. This pilot study showed that automated multiplex-PCR was not superior to conventional cultures

    Article  PubMed  Google Scholar 

  39. Trevail C, et al. An evaluation of the role of nuclear medicine imaging in the diagnosis of periprosthetic infections of the hip. Clin Radiol. 2016;71(3):211–9.

    Article  CAS  PubMed  Google Scholar 

  40. • Wenter V, et al. The diagnostic value of [(18)F]FDG PET for the detection of chronic osteomyelitis and implant-associated infection. Eur J Nucl Med Mol Imaging. 2016;43(4):749–61. This study shows how 18-FDG PET may be useful to exclude PJI

    Article  PubMed  Google Scholar 

  41. Bennett JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. Eighth edition ed.

  42. Parvizi J, Gehrke T. International consensus on periprosthetic joint infection: let cumulative wisdom be a guide. J Bone Joint Surg Am. 2014;96(6):441.

    Article  PubMed  Google Scholar 

  43. Koyonos L, et al. Infection control rate of irrigation and debridement for periprosthetic joint infection. Clin Orthop Relat Res. 2011;469(11):3043–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Odum SM, et al. Irrigation and debridement for periprosthetic infections: does the organism matter? J Arthroplast. 2011;26(6 Suppl):114–8.

    Article  Google Scholar 

  45. Buller LT, et al. The preoperative prediction of success following irrigation and debridement with polyethylene exchange for hip and knee prosthetic joint infections. J Arthroplast. 2012;27(6):857–64. e1-4

    Article  Google Scholar 

  46. Sukeik M, Patel S, Haddad FS. Aggressive early debridement for treatment of acutely infected cemented total hip arthroplasty. Clin Orthop Relat Res. 2012;470(11):3164–70.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tintle SM, et al. Prosthesis retention, serial debridement, and antibiotic bead use for the treatment of infection following total joint arthroplasty. Orthopedics. 2009;32(2):87.

    PubMed  Google Scholar 

  48. Fukagawa S, et al. High-dose antibiotic infusion for infected knee prosthesis without implant removal. J Orthop Sci. 2010;15(4):470–6.

    Article  PubMed  Google Scholar 

  49. Whiteside LA, et al. Reinfected revised TKA resolves with an aggressive protocol and antibiotic infusion. Clin Orthop Relat Res. 2012;470(1):236–43.

    Article  PubMed  Google Scholar 

  50. Kuiper JW, et al. Implantation of resorbable gentamicin sponges in addition to irrigation and debridement in 34 patients with infection complicating total hip arthroplasty. Hip Int. 2013;23(2):173–80.

    Article  PubMed  Google Scholar 

  51. Bejon P, et al. Two-stage revision for prosthetic joint infection: predictors of outcome and the role of reimplantation microbiology. J Antimicrob Chemother. 2010;65(3):569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mahmud T, et al. Assessing the gold standard: a review of 253 two-stage revisions for infected TKA. Clin Orthop Relat Res. 2012;470(10):2730–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sharma H, Kakar R. Outcome of Girdlestone’s resection arthroplasty following complications of proximal femoral fractures. Acta Orthop Belg. 2006;72(5):555–9.

    PubMed  Google Scholar 

  54. Klima S, Zeh A, Josten C. Reimplantation of a hip prosthesis in patients with an infected resection arthroplasty. Z Orthop Unfall. 2008;146(5):616–23.

    Article  CAS  PubMed  Google Scholar 

  55. Sharma H, De Leeuw J, Rowley DI. Girdlestone resection arthroplasty following failed surgical procedures. Int Orthop. 2005;29(2):92–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Berbari EF, et al. Outcome of prosthetic joint infection in patients with rheumatoid arthritis: the impact of medical and surgical therapy in 200 episodes. Clin Infect Dis. 2006;42(2):216–23.

    Article  PubMed  Google Scholar 

  57. Parvizi, J., et al., Oral antibiotic therapy. J Arthroplasty, 2013.

  58. Hirakawa K, et al. Results of 2-stage reimplantation for infected total knee arthroplasty. J Arthroplast. 1998;13(1):22–8.

    Article  CAS  Google Scholar 

  59. Bernard L, et al. Six weeks of antibiotic treatment is sufficient following surgery for septic arthroplasty. J Inf Secur. 2010;61(2):125–32.

    Google Scholar 

  60. Farhad R, et al. Six weeks antibiotic therapy for all bone infections: results of a cohort study. Eur J Clin Microbiol Infect Dis. 2010;29(2):217–22.

    Article  CAS  PubMed  Google Scholar 

  61. • Li HK, et al. Oral versus intravenous antibiotic treatment for bone and joint infections (OVIVA): study protocol for a randomised controlled trial. Trials. 2015;16:583. This study is the first controlled clinical trial to elucidate intravenous vs oral treatment in bone infections and PJI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Silvestre A, et al. Revision of infected total knee arthroplasty: two-stage reimplantation using an antibiotic-impregnated static spacer. Clin Orthop Surg. 2013;5(3):180–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rao N, et al. Long-term suppression of infection in total joint arthroplasty. Clin Orthop Relat Res. 2003;414:55–60.

    Article  Google Scholar 

  64. Pavoni GL, et al. Conservative medical therapy of prosthetic joint infections: retrospective analysis of an 8-year experience. Clin Microbiol Infect. 2004;10(9):831–7.

    Article  CAS  PubMed  Google Scholar 

  65. Lora-Tamayo J, et al. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis. 2013;56(2):182–94.

    Article  PubMed  Google Scholar 

  66. Marculescu CE, et al. Outcome of prosthetic joint infections treated with debridement and retention of components. Clin Infect Dis. 2006;42(4):471–8.

    Article  CAS  PubMed  Google Scholar 

  67. Senneville E, et al. Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis. 2011;53(4):334–40.

    Article  PubMed  PubMed Central  Google Scholar 

  68. • Rodriguez-Pardo D, et al. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect. 2014;20(11):O911–9. Multicenter study with the largest serie of PJI secondary to Gram-negative microorganisms treated with DAIR

    Article  CAS  PubMed  Google Scholar 

  69. Zmistowski, B., et al., Diagnosis of Periprosthetic Joint Infection. J Arthroplasty, 2013.

  70. Peel TN, et al. Outcome of debridement and retention in prosthetic joint infections by methicillin-resistant staphylococci, with special reference to rifampin and fusidic acid combination therapy. Antimicrob Agents Chemother. 2013;57(1):350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gomez J, et al. Linezolid plus rifampin as a salvage therapy in prosthetic joint infections treated without removing the implant. Antimicrob Agents Chemother. 2011;55(9):4308–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vila A, et al. Acinetobacter prosthetic joint infection treated with debridement and high-dose Tigecycline. Infect Chemother. 2016;48(4):324–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Antony SJ, et al. Extended-Spectrum Beta-lactamase infections in orthopedic-related devices and prosthetic joints. Orthopedics. 2016;39(4):e668–73.

    Article  PubMed  Google Scholar 

  74. de Sanctis J, et al. Complex prosthetic joint infections due to carbapenemase-producing Klebsiella pneumoniae: a unique challenge in the era of untreatable infections. Int J Infect Dis. 2014;25:73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lackner M, et al. Severe prosthetic joint infection in an immunocompetent male patient due to a therapy refractory Pseudallescheria apiosperma. Mycoses. 2011;54(Suppl 3):22–7.

    Article  PubMed  Google Scholar 

  76. Yilmaz M, et al. Aspergillus fumigatus infection as a delayed manifestation of prosthetic knee arthroplasty and a review of the literature. Scand J Infect Dis. 2011;43(8):573–8.

    Article  PubMed  Google Scholar 

  77. Anagnostakos K, et al. Fungal periprosthetic hip and knee joint infections clinical experience with a 2-stage treatment protocol. J Arthroplast. 2012;27(2):293–8.

    Article  Google Scholar 

  78. Pappas PG, et al. Clinical practice guideline for the Management of Candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50.

    Article  PubMed  Google Scholar 

  79. Iarikov D, et al. Choice and doses of antibacterial agents for cement spacers in treatment of prosthetic joint infections: review of published studies. Clin Infect Dis. 2012;55(11):1474–80.

    Article  CAS  PubMed  Google Scholar 

  80. Hsu YC, et al. Antibiotic-loaded cement articulating spacer for 2-stage reimplantation in infected total knee arthroplasty: a simple and economic method. J Arthroplast. 2007;22(7):1060–6.

    Article  CAS  Google Scholar 

  81. Jung J, et al. Complications after spacer implantation in the treatment of hip joint infections. Int J Med Sci. 2009;6(5):265–73.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Johnson AJ, et al. Minimizing dynamic knee spacer complications in infected revision arthroplasty. Clin Orthop Relat Res. 2012;470(1):220–7.

    Article  PubMed  Google Scholar 

  83. Romano CL, et al. Preformed antibiotic-loaded cement spacers for two-stage revision of infected total hip arthroplasty. Long-term results. Hip Int. 2012;22(Suppl 8):S46–53.

    Article  PubMed  Google Scholar 

  84. Nettrour JF, et al. Articulating spacers for the treatment of infected total knee arthroplasty: effect of antibiotic combinations and concentrations. Orthopedics. 2013;36(1):e19–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Franco-Cendejas M.D., MSc.

Ethics declarations

Conflict of interest

Dr. Franco-Cendejas reports personal fees from Pfizer and personal fees from Stendhal Pharma, outside the submitted work. Dr. Mondragón-Eguiluz reports personal fees from Pfizer, personal fees from Stendhal Pharma, personal fees from Eli Lilly, and personal fees from Astra-Zeneca, outside the submitted work. Dr. Vanegas-Rodríguez declares that he has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the topical collection on Treatment and Prevention of Hospital Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco-Cendejas, R., Vanegas-Rodríguez, E.S. & Mondragón-Eguiluz, A. What’s New in the Diagnosis and Treatment of Orthopedic Prostheses-Related Infections. Curr Treat Options Infect Dis 9, 142–154 (2017). https://doi.org/10.1007/s40506-017-0116-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-017-0116-x

Keywords

Navigation