Skip to main content
Log in

Selenium as a nutrient in biostimulation and biofortification of cereals

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Selenium is considered as an essential trace element for humans, animals and microorganisms, but its role in higher plants is unclear. The boundary between Se as beneficial nutrient and a toxic element is very narrow. Selenium application at lower level stimulates growth and development in plants but at the higher level it exerts toxic effects. Selenium is a constituent of seleno-proteins having both structural and enzymatic roles. Lack of Se in selenium-deficient areas is linked with various health disorders in humans and animals, while an excess of Se causes diseases related to hair and nails. It also affects a large portion of world population. Selenium is declining in the food chain; hence various strategies are required to increase its intake. Cereals constitute an important component of human diet, which can provide a large portion of Se to Se-deficient regions. Increasing the Se content of cereals represents a food systems approach that would increase its intake, with consequent likely improvement in public health, and health cost savings. Moreover, application of Se at low concentration stimulates the growth and physiology of cereals. We present here an insight into the effects of Se supplementation on growth and nutritional aspects in some selective cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas, S. M. (2012). Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. Journal of Stress Physiology and Biochemistry, 8, 268–286.

    Google Scholar 

  • Abrams, M. M., Shennan, C., Zasoski, R. J., & Burau, R. G. (1990). Selenomethionine uptake by wheat seedlings. Agronomy Journal, 82(6), 1127–1130.

    Article  CAS  Google Scholar 

  • Acuña, J. J., Jorquera, M. A., Barra, P. J., Crowley, D. E., & de la Luz Mora, M. (2013). Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biology and Fertility of Soils,. doi:10.1007/s00374-012-0705-2.

    Google Scholar 

  • Adams, M. L., Lombi, E., Zhao, F. J., & McGrath, S. P. (2002). Evidence of low selenium concentrations in UK bread-making wheat grain. Journal of the Science of Food and Agriculture, 82, 1160–1165.

    Article  CAS  Google Scholar 

  • Akbulut, M., & Çakır, S. (2010). The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiology and Biochemistry, 48, 160–166.

    Article  CAS  PubMed  Google Scholar 

  • Akladious, S. A. (2012). Influence of different soaking times with selenium on growth, metabolic activities of wheat seedlings under low temperature stress. African Journal of Biotechnology, 11, 14792–14804.

    CAS  Google Scholar 

  • Anderson, M. S., Lakin, H. W., Beeson, K. C., Smith, F. F., & Thacker, E. (1961). Selenium in Agriculture. Agricultural research services, U.S. Department of agriculture handbook. (p. 65), Washington, DC.

  • Asada, K., & Kiso, K. (1973). Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts. European Journal of Biochemistry, 33, 253–257.

    Article  CAS  PubMed  Google Scholar 

  • ATSDR. (2003). Agency for toxic substances and disease registry toxicological profile for selenium. U.S. Department of Health and Human Services, Public Health Services, Atlanta, GA, 2003. http://www.atsdr.cdc.gov/toxprofiles/tp92.html.

  • Bañuelos, G. S., Lin, Z-Q., Arroyo, I., & Terry, N., (2005). Selenium volatilization in vegetated agricultural drainage sediment from the San Luis drain, central California. Chemosphere, 60, 1203–1213.

    Article  PubMed  CAS  Google Scholar 

  • Barceloux, D. G. (1999). Selenium. Journal of Toxicology Clinical Toxicology, 37, 145–172.

    Article  CAS  PubMed  Google Scholar 

  • Borowska, K. (1998). Distribution of total and the DTPA-extractable selenium in soil profiles from Kujawy Upland (Poland), XVI Congress of the International Society of Soil Science

  • Broadley, M. R., Alcock, J., Alford, J., Cartwright, P., Foot, I., Fairweather-Tait, S. J., et al. (2010). Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant and Soil, 332, 5–18.

    Article  CAS  Google Scholar 

  • Broadley, M. R., White, P. J., Bryson, R. J., Meacham, M. C., Bowen, H. C., Johnson, S. E., et al. (2006). Biofortification of UK food crops with selenium. Proceedings of the Nutrition Society, 65, 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Brown, T. A., & Shrift, A. (1981). Exclusion of selenium from proteins of selenium-tolerant Astragalus species. Plant Physiology, 67, 1051–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson, C. L., Kaplan, D. I., & Adriano, D. C. (1989). Effects of selenium on germination and radicle elongation of selected agronomic species. Environmental and Experimental Botany, 29, 493–498.

    Article  CAS  Google Scholar 

  • Chen, R. W., Lacy, V. L., & Whanger, P. D. (1975). Effect of selenium on methylmercury binding to subcellular and soluble proteins in rat tissues. Research Communications in Chemical Pathology and Pharmacology, 12, 297–308.

    CAS  PubMed  Google Scholar 

  • Chen, L., Yang, F., Xu, J., Hu, Y., Hu, Q., Zhang, Y., et al. (2002). Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. Journal of Agricultural and Food Chemistry, 50, 5128–5130.

    Article  CAS  PubMed  Google Scholar 

  • Chilimba, A. D., Young, S. D., Black, C. R., Meacham, M. C., Lammel, J., & Broadley, M. R. (2012). Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Research, 125, 118–128.

    Article  Google Scholar 

  • Chilimba, A. D., Young, S. D., Black, C. R., Rogerson, K. B., Ander, E. L., Watts, M. J., et al. (2011). Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Scientific Reports,. doi:10.1038/srep00072.

    PubMed  PubMed Central  Google Scholar 

  • Chu, J., Yao, X., & Zhang, Z. (2010). Responses of wheat seedlings to exogenous selenium supply under cold stress. Biological Trace Element Research, 136, 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Combs, G. F. (1988). Selenium in foods. Advances in Food Research, 32, 85–113.

    Article  CAS  PubMed  Google Scholar 

  • Combs, G. F. (2001). Selenium in global food systems. British Journal of Nutrition, 85, 517–547.

    Article  CAS  PubMed  Google Scholar 

  • Cubadda, F., Aureli, F., Ciardullo, S., D’Amato, M., Raggi, A., Acharya, R., et al. (2010). Changes in selenium speciation associated with increasing tissue concentrations of selenium in wheat grain. Journal of Agricultural and Food Chemistry, 58, 2295–2301.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, D. F., & Powers, H. A. (1949). Selenium content of some volcanic rocks from Western United States and Hawaiian Islands. US Geological Survey Bulletin, 69–81.

  • De La Rosa, T. M., Julkunen-Tiitto, R., Lehto, T., & Aphalo, P. J. (2001). Secondary metabolites and nutrient concentrations in silver birch seedlings under five levels of daily UV-B exposure and two relative nutrient addition rates. New Phytologist, 150, 121–131.

    Article  Google Scholar 

  • De Souza, M. P., Pickering, I. J., Walla, M., & Terry, N. (2002). Selenium assimilation and volatilization from selenocyanate-treated Indian mustard and muskgrass. Plant Physiology, 128, 625–633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhillon, K. S., Bawa, S. S., & Dhillon, S. K. (1992). Selenium toxicity in some plants and soils of Punjab. Journal of the Indian Society of Soil Science, 40, 132–136.

    CAS  Google Scholar 

  • Dhillon, K. S., & Dhillon, S. K. (2003). Distribution and management of seleniferous soils. Advances in Agronomy, 79, 119–184.

    Article  CAS  Google Scholar 

  • Djanaguiraman, M., Prasad, P. V. V., & Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 48, 999–1007.

    Article  CAS  PubMed  Google Scholar 

  • Donovan, U. M., Gibson, R. S., Ferguson, E. L., Ounpuu, S., & Heywood, P. (1992). Selenium intakes of children from Malawi and Papua New Guinea consuming plant-based diets. Journal of Trace Elements and Electrolytes in Health and Disease, 6, 39–43.

    CAS  PubMed  Google Scholar 

  • Dungan, R. S., Yates, S. R., & Frankenberger, W. T. (2003). Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environmental Microbiology, 5, 287–295.

    Article  CAS  PubMed  Google Scholar 

  • Durán, P., Acuña, J. J., Jorquera, M. A., Azcón, R., Borie, F., Cornejo, P., et al. (2013). Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. Journal of Cereal Science, 57, 275–280.

    Article  CAS  Google Scholar 

  • Elrashidi, M. A., Adriano, D. C., Workman, S. M., & Lindsay, W. L. (1987). Chemical equilibria of selenium in soils: A theoretical development1. Soil Science, 144, 141–152.

    Article  CAS  Google Scholar 

  • Eurola, M., Ekholm, P. A. I. V. I., Ylinen, M. A. I. J. A., Koivistoinen, P. E. K. K. A., & Varo, P. E. R. T. T. I. (1990). Effects of selenium fertilization on the selenium content of cereal grains, flour, and bread produced in Finland. Cereal Chemistry, 67, 334–337.

    CAS  Google Scholar 

  • Eurola, M. H., Ekholm, P., Ylinen, M., Koivistoinen, P., & Varo, P. (1989). Effects of selenium fertilization on the selenium content of selected finnish fruits and vegetables. Acta Agriculturae Scandinavica, 39, 345–350.

    Article  CAS  Google Scholar 

  • Eurola, M. H., Ekholm, P. I., Ylinen, M. E., Varo, P. T., & Koivistoinen, P. E. (1991). Selenium in Finnish foods after beginning the use of selenate-supplemented fertilisers. Journal of the Science of Food and Agriculture, 56, 57–70.

    Article  CAS  Google Scholar 

  • Fahim, N., Ashraf, M. Y., Ahmad, R., & Waraich, E. A. (2013). Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biological Trace Element Research, 151, 284–293.

    Article  CAS  Google Scholar 

  • FAO, WHO. (2001). Human vitamin and mineral requirements. Report of a Joint FAO/WHO Expert Consultation, Bangkok, Thailand, Food and Nutrition Division, FAO, Rome.

  • Feng, R. W., Wei, C. Y., Tu, S. X., Tang, S. R., & Wu, F. C. (2011). Detoxification of antimony by selenium and their interaction in paddy rice under hydroponic conditions. Microchemical Journal, 97, 57–61.

    Article  CAS  Google Scholar 

  • Fleming, G. A. (1980). Essential micronutrient II Iodine and selenium. In B. E. Davies (Ed.), Applied soil trace elements (pp. 199–234). Toranto: Wiley.

    Google Scholar 

  • Fordyce, F. (2005). Selenium deficiency and toxicity in the environment. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & O. Smedley (Eds.), Essentials of medical geology (pp. 373–415). Amsterdam: Elsevier.

    Google Scholar 

  • Fu, L. H., Wang, X. F., Eyal, Y., She, Y. M., Donald, L. J., Standing, K. G., et al. (2002). A selenoprotein in the plant kingdom mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. Journal of Biological Chemistry, 277, 25983–25991.

    Article  CAS  PubMed  Google Scholar 

  • Galinha, C., do Carmo Freitas, M., Pacheco, A. M., Coutinho, J., Maçãs, B., & Almeida, A. S. (2013). Selenium supplementation of Portuguese wheat cultivars through foliar treatment in actual field conditions. Journal of Radioanalytical and Nuclear Chemistry, 297, 227–231.

    Article  CAS  Google Scholar 

  • Ghosh, A., Mohod, A. M., Paknikar, K. M., & Jain, R. K. (2008). Isolation and characterization of selenite-and selenate-tolerant microorganisms from selenium-contaminated sites. World Journal of Microbiology and Biotechnology, 24, 1607–1611.

    Article  CAS  Google Scholar 

  • Gissel-Nielsen, G. (1986). Comparison of selenium treatments of crops in the field. Biological Trace Element Research, 10(3), 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Gissel-Nielsen, G. (1998). Effects of selenium supplementation on field crops. In W. T. Frankenberger Jr. & R. A. Engberg (Eds.), Environmental chemistry of selenium (pp. 99–128). New York: Marcel Dekker Inc.

    Google Scholar 

  • Giessel-Nielsen, G., Gupta, U. C., Lamand, M., & Westermarck, T. (1984). Selenium in soil and plants and its importance in livestock and human nutrition. Advances in Agronomy, 37, 397–460.

    Article  Google Scholar 

  • Girton, R. E. (1974). Effects of selenite selenium on respiration in maize roots. Plant and Soil, 40, 119–127.

    Article  CAS  Google Scholar 

  • Gondi, F., Panto, G., Feher, J., Bogye, G., & Alfthan, G. (1992). Selenium in Hungary. The rock-soil-human system. Biological Trace Element Research, 35(3), 299–306.

    Article  CAS  PubMed  Google Scholar 

  • Gu, X. H., & Guo, W. S. C. F. (2010). Comparative Study for Cold acclimation physiological Indicators of Forsythia mandshurica Uyeki and Forsythia viridissima Indi. Middle East Journal of Scientific Research, 6, 556–562.

    Google Scholar 

  • Gupta, U. C. (1995). Effects of SelcoteR ultra and sodium selenite (laboratory versus Commercial grade) on selenium concentration in food crops. Journal of Plant Nutrition, 18, 1629–1636.

    Article  CAS  Google Scholar 

  • Gupta, U. C., & Gupta, S. C. (2002). Quality of animal and human life as affected by selenium management of soils and crops. Communications in Soil Science and Plant Analysis, 33, 2537–2555.

    Article  CAS  Google Scholar 

  • Gupta, U. C., & MacLeod, J. A. (1999). Relationship between soybean seed selenium and harvested grain selenium. Canadian Journal of Soil Science, 79, 221–223.

    Article  CAS  Google Scholar 

  • Gupta, U. C., & Winter, K. A. (1975). Selenium content of soils and crops and the effects of lime and sulfur on plant selenium. Canadian Journal of Soil Science, 55, 161–166.

    Article  CAS  Google Scholar 

  • Habibi, G. (2013). Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica, 101, 31–39.

    Article  CAS  Google Scholar 

  • Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology, 18, 309–318.

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen, H., Xue, T., & Piironen, V. (2000). Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil, 225(1–2), 193–200.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., & Fujita, M. (2011). Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 143, 1758–1776.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., & Fujita, M. (2011). Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biological Trace Element Research, 143, 1704–1721.

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford, M. J., & Zhao, F. J. (2007). Strategies for increasing the selenium content of wheat. Journal of Cereal Science, 46, 282–292.

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak, B. (2008a). Changes in anthocyanin content as indicator of maize sensitivity to selenium. Journal of Plant Nutrition, 31, 1232–1242.

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak, B. (2008b). Effect of selenium on selected macronutrients in maize plants. Journal of Elementology, 13, 513–519.

    Google Scholar 

  • Haygarth, P. M., Cooke, A. I., Jones, K. C., Harrison, A. F., & Johnston, A. E. (1993). Long-term change in the biogeochemical cycling of atmospheric selenium: Deposition to plants and soil. Journal of Geophysical Research: Atmospheres, 98, 16769–16776.

    Article  CAS  Google Scholar 

  • Hu, Q., Chen, L., Xu, J., Zhang, Y., & Pan, G. (2002). Determination of selenium concentration in rice and the effect of foliar application of Se-enriched fertilizer or sodium selenite on the selenium content of rice. Journal of the Science of Food and Agriculture, 82, 869–872.

    Article  CAS  Google Scholar 

  • Hu, Q., Xu, J., & Pang, G. (2003). Effect of selenium on the yield and quality of green tea leaves harvested in early spring. Journal of Agricultural and Food Chemistry, 51, 3379–3381.

    Article  CAS  PubMed  Google Scholar 

  • Ihnat, M. (1989). Plants and agricultural materials. In M. Ihnat (Ed.), Occurrence and distribution of selenium (pp. 33–105). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Jaakkola, K., Tummavuori, J., Pirinen, A., Kurkela, P., Tolonen, M., & Arstila, A. U. (1983). Selenium levels in whole blood of Finnish volunteers before and during organic and inorganic selenium supplementation. Scandinavian Journal of Clinical and Laboratory Investigation, 43, 473–476.

    Article  CAS  PubMed  Google Scholar 

  • Jun, Y., Fang, W., Haibo, Q., Guoxiong, C., Eviatar, N., Fahima, T., et al. (2011). Natural variation in grain selenium concentration of wild barley, Hordeum spontaneum, populations from Israel. Biological Trace Element Research, 142, 773–786.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human (p. 550). Berlin: Springer.

    Book  Google Scholar 

  • Kinraide, T. B. (2003). The controlling influence of cell-surface electrical potential on the uptake and toxicity of selenate (SeO4 2−). Physiologia Plantarum, 117, 64–71.

    Article  CAS  Google Scholar 

  • Koivistoinen, P., & Varo, P. (1984). Selenium in Finnish food. In: Selenium in biology and medicine, Proceedings of the III International Symposium on Selenium in Biology and Medicine (pp 645–651).

  • Kopsell, D. A., & Randle, W. M. (1997). Short-day onion cultivars differ in bulb selenium and sulfur accumulation which can affect bulb pungency. Euphytica, 96, 385–390.

    Article  CAS  Google Scholar 

  • Kopsell, D. A., Randle, W. M., & Mills, H. A. (2000). Nutrient accumulation in leaf tissue of rapid-cycling Brassuca oleracea responds to increasing sodium selenate concentrations. Journal of Plant Nutrition, 23, 927–935.

    Article  CAS  Google Scholar 

  • Koutnik, V., & Docekalova, H. (1994). Selenium distribution oat plants sown during ontogenesis. Rostlinna Vyroba, 40, 163–172.

    CAS  Google Scholar 

  • Kumar, M., Bijo, A. J., Baghel, R. S., Reddy, C. R., & Jha, B. (2012). Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiology and Biochemistry, 51, 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov, V. V., Kholodova, V. P., Kuznetsov, V. V., & Yagodin, B. A. (2003). Selenium regulates the water status of plants exposed to drought. In Doklady Biological Sciences, 390(1), 266–268. MAIK Nauka/Interperiodica.

  • Låg, J., & Steinnes, E. (1978). Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma, 20, 3–14.

    Article  Google Scholar 

  • Lampis, S., Ferrari, A., Cunha-Queda, A. C. F., Alvarenga, P., Di Gregorio, S., & Vallini, G. (2009). Selenite resistant rhizobacteria stimulate SeO3 2− phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds. Environmental Science and Pollution Research, 16, 663–670.

    Article  CAS  PubMed  Google Scholar 

  • Läuchli, A. (1993). Selenium in plants: Uptake, functions, and environmental toxicity. Botanica Acta, 106, 455–468.

    Article  Google Scholar 

  • Lemly, A. D. (2002). Selenium assessment in aquatic ecosystems—A guide for hazard evaluation and water quality criteria (p. 161). New York: Springer.

    Book  Google Scholar 

  • Lemly, A. D., Finger, S. E., & Nelson, M. K. (1993). Sources and impacts of irrigation drain water contaminants in arid wetlands. Environmental Toxicology and Chemistry, 12, 2265–2279.

    Article  CAS  Google Scholar 

  • Lintschinger, J., Fuchs, N., Moser, J., Kuehnelt, D., & Goessler, W. (2000). Selenium-enriched sprouts. A raw material for fortified cereal-based diets. Journal of Agricultural and Food Chemistry, 48, 5362–5368.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Wang, D. J., Jiang, X. J., & Cao, Z. H. (2004). Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza sativa). Environmental Geochemistry and Health, 26, 325–330.

    Article  CAS  PubMed  Google Scholar 

  • Lyons, G. (2010). Selenium in cereals: improving the efficiency of agronomic biofortification in the UK. Plant and Soil, 332(1), 1–4.

    Article  CAS  Google Scholar 

  • Lyons, G. H., Genc, Y., Soole, K., Stangoulis, J. C. R., Liu, F., & Graham, R. D. (2009). Selenium increases seed production in Brassica. Plant and Soil, 318, 73–80.

    Article  CAS  Google Scholar 

  • Lyons, G. H., Lewis, J., Lorimer, M. F., Holloway, R. E., Brace, D. M., Stangoulis, J. C., et al. (2004). High-selenium wheat: Agronomic biofortification strategies to improve human nutrition. Food Agriculture and Environment, 2, 171–178.

    Google Scholar 

  • Lyons, G., Ortiz-Monasterio, I., Stangoulis, J., & Graham, R. (2005a). Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant and Soil, 269, 369–380.

    Article  CAS  Google Scholar 

  • Lyons, G., Stangoulis, J., & Graham, R. (2003). High-selenium wheat: Biofortification for better health. Nutrition Research Reviews, 16, 45–60.

    Article  CAS  PubMed  Google Scholar 

  • Lyons, G. H., Stangoulis, J. C., & Graham, R. D. (2005b). Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant and Soil, 270, 179–188.

    Article  CAS  Google Scholar 

  • Mane, P. C., Bhosle, A. B., & Kulkarni, P. A. (2011). Biosorption and biochemical study on water hyacinth (Eichhornia crassipes) with reference to selenium. Archives of Applied Science Research, 3, 222–229.

    CAS  Google Scholar 

  • Martens, D. A., & Suarez, D. L. (1996). Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environmental Science and Technology, 31, 133–139.

    Article  Google Scholar 

  • Mayland, H. F. (1994). Selenium in plant and animal nutrition. In W. T. Frankenberger & S. Benson Jr. (Eds.), Selenium in the Environment (pp. 29–45). New York: Marcel-Dekker.

    Google Scholar 

  • Mayland, H. F., James, L. F., Panter, K. E., & Sonderegger, J. L. (1989). Selenium in seleniferous environments. In: L. W. Jacobs (Ed.), Selenium in agriculture and the environment (pp. 15–50). Madison: Soil Science of America and American Society of Agronomy.

    Google Scholar 

  • Murphy, M. D., & Quirke, W. A. (1997). The effect of sulphur/nitrogen/selenium interactions on herbage yield and quality. Irish Journal of Agricultural and Food Research, 36(1), 31–38.

    CAS  Google Scholar 

  • Neal, R. H. (1995). Selenium. In B. J. Alloway (Ed.), Heavy metals in soils (2nd ed., pp. 260–283). Glasgow: Blackie Academic & Professional.

    Chapter  Google Scholar 

  • Neuhierl, B., Thanbichler, M., Lottspeich, F., & Böck, A. (1999). A Family of S-Methylmethionine-dependent Thiol/Selenol Methyltransferases role in selenium tolerance and evolutionary relation. Journal of Biological Chemistry, 274, 5407–5414.

    Article  CAS  PubMed  Google Scholar 

  • Oldfield, J. E. (1992). Risks and benefits in agricultural uses of selenium. Environmental Geochemistry and Health, 14, 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Parker, D. R., & Page, A. L. (1994). Vegetation management strategies for remediation of selenium contaminated soils. In W. T. Frankenberger & S. Benson Jr. (Eds.), Selenium in the environment (pp. 327–341). New York: Marcel Dekker Inc.

    Google Scholar 

  • Pazurkiewicz-Kocot, K. R. Y. S. T. Y. N. A., Galas, W. I. T. O. L. D., & Kita, A. N. D. R. Z. E. J. (2003). The effect of selenium on the accumulation of some metals in Zea mays L. plants treated with indole-3-acetic acid. Cellular and Molecular Biology Letters, 8, 97–104.

    CAS  PubMed  Google Scholar 

  • Peng, A., Xu, Y., Liu, J. H., & Wang, Z. J. (2000). Study on the dose-effect relationship of selenite with the growth of wheat. Biological Trace Element Research, 76, 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Peng, A., Xu, Y., & Wang, Z. J. (2001). The effect of fulvic acid on the dose effect of selenite on the growth of wheat. Biological Trace Element Research, 83, 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Perizek, J., Beues, T., Ostalova, T., & Babicky, A. (1971). The detoxifying effects of selenium: Interrelations between compounds of selenium and certain toxic metals. In W. Mertz & W. E. Cormatzer (Eds.), Newer trace elements in nutrition (pp. 85–122). NewYork: Dekker.

    Google Scholar 

  • Pezzarossa, B., Malorgio, F., & Tonutti, P. (1999). Effects of selenium uptake by tomato plants on senescense, fruit ripening and ethylene evolution. Biology and Biotechnology of the Plant Hormone Ethylene, II, 275–276.

    Article  Google Scholar 

  • Pilon-Smits, E. A., Quinn, C. F., Tapken, W., Malagoli, M., & Schiavon, M. (2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12, 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Poblaciones, M. J., Rodrigo, S., Santamaría, O., Chen, Y., & McGrath, S. P. (2014). Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chemistry, 146, 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Premarathna, H. L., McLaughlin, M. J., Hettiarachchi, G., Kirby, J., Stacey, S., & Chittleborough, D. (2010). Potential availability of fertiliser selenium in soils during flooding and subsequent aeration. World Soil Congress.

  • Presser, T. S. (1994). Geologic origins and pathways of selenium from the California coast ranges to the west-central San Joaquin Valley. In S. Benson Jr. & W. T. Franken Berger Jr. (Eds.), Selenium in the environment (pp. 139–155). New York: Marcel Dekker Inc.

    Google Scholar 

  • Presser, T. S., & Piper, D. Z. (1998). Mass balance approach to selenium cycling through the San Joaquin Valley: From source to river to bay. In R. A. Engberg Jr. & W. T. Franken Berger Jr. (Eds.), Environmental chemistry of selenium (pp. 153–182). New York: Marcel Dekker.

    Google Scholar 

  • Pukacka, S., Ratajczak, E., & Kalemba, E. (2011). The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. Journal of Plant Physiology, 168, 220–225.

    Article  CAS  PubMed  Google Scholar 

  • Rayman, M. P. (2002). The argument for increasing selenium intake. Proceedings of the Nutrition Society, 61, 203–215.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo, S., Santamaría, O., López-Bellido, F. J., & Poblaciones, M. J. (2013). Agronomic selenium biofortification of two-rowed barley under Mediterranean conditions. Plant Soil and Environment, 59, 115–120.

    Google Scholar 

  • Rosenfeld, I., & Beath, O. A. (1964). Selenium. Geobotany, biochemistry, toxicity and nutrition. New York: Academic Press.

    Google Scholar 

  • Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179, 588–590.

    Article  CAS  PubMed  Google Scholar 

  • Sajedi, N., Madani, H., & Naderi, A. (2011). Effect of microelements and selenium on superoxide dismutase enzyme, malondialdehyde activity and grain yield maize (Zea mays L.) under water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39, 153–159.

    CAS  Google Scholar 

  • Schwarz, K., & Foltz, C. M. (1957). Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society, 79, 3292–3293.

    Article  CAS  Google Scholar 

  • Seby, F., Gautier, M. P., Lespes, G., & Astruc, M. (1997). Selenium speciation in soils after alkaline extraction. Science of the Total Environment, 207, 81–90.

    Article  CAS  Google Scholar 

  • Shand, C., Coutts, G., Duff, E., & Atkinson, D. (1992). Soil selenium treatments to ameliorate selenium deficiency in herbage. Journal of the Science of Food and Agriculture, 59, 27–35.

    Article  CAS  Google Scholar 

  • Shanker, K., Mishra, S., Srivastava, S., Srivastava, R., Dass, S., Prakash, S., et al. (1996). Effect of selenite and selenate on plant uptake of cadmium by maize (Zea mays). Bulletin of Environmental Contamination and Toxicology, 56, 419–424.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Bansal, A., Dhillon, S. K., & Dhillon, K. S. (2010). Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant Soil, 329, 339–348.

    Article  CAS  Google Scholar 

  • Shrift, A., & Ulrich, J. M. (1969). Transport of selenate and selenite into Astragalus roots. Plant Physiology, 44, 893–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smrkolj, P., Germ, M., Kreft, I., & Stibilj, V. (2006). Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. Journal of Experimental Botany, 57, 3595–3600.

    Article  CAS  PubMed  Google Scholar 

  • Sors, T. G., Ellis, D. R., & Salt, D. E. (2005). Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research, 86, 373–389.

    Article  CAS  PubMed  Google Scholar 

  • Stadlober, M., Sager, M., & Irgolic, K. J. (2001). Effects of selenate supplemented fertilisation on the selenium level of cereals—identification and quantification of selenium compounds by HPLC–ICP–MS. Food Chemistry, 73, 357–366.

    Article  CAS  Google Scholar 

  • Stroud, J. L., Li, H. F., Lopez-Bellido, F. J., Broadley, M. R., Foot, I., Fairweather-Tait, S. J., et al. (2010). Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant and Soil,. doi:10.1007/s11104-009-0229-1.

    Google Scholar 

  • Sugawara, N., Hirohata, Y., & Sugawara, C. (1988). Testicular dysfunction induced by cadmium and its improvement caused by selenium in the mouse. Journal of Environmental Pathology, Toxicology and Oncology: Official Organ of the International Society for Environmental Toxicology and Cancer, 9, 53–64.

    Google Scholar 

  • Tadina, N., Germ, M., Kreft, I., Breznik, B., & Gaber, A. (2007). Effects of water deficit and selenium on common buckwheat (Fagopyrum esculentum Moench.) plants. Photosynthetica, 45, 472–476.

    Article  CAS  Google Scholar 

  • Tan, Z. C., Chen, J. Q., & Xue, H. Y. (2000). Studies on the role of selenium (Se) in decreasing Pb, Cd, and Cr pollution to rice. Acta Scientiarum Naturalium Universitatis Normalis Hunanensis, 2, 80–83.

    Google Scholar 

  • Terry, N., Zayed, A. M., De Souza, M. P., & Tarun, A. S. (2000). Selenium in higher plants. Annual Review of Plant Biology, 51, 401–432.

    Article  CAS  Google Scholar 

  • Tripathi, N., & Misra, S. G. (1974). Uptake of applied selenium by plants. India Journal of Agricultural Sciences, 44, 804–807.

    CAS  Google Scholar 

  • Tveitnes, S., Singh, B. R., & Ruud, L. (1995). Selenium concentration in spring wheat as influenced by basal application and top dressing of selenium-enriched fertilizers. Fertilizer Research, 45, 163–167.

    Article  CAS  Google Scholar 

  • Wahba, Z. Z., Coogan, T. P., Rhodes, S. W., & Waalkes, M. P. (1993). Protective effects of selenium on cadmium toxicity in rats: Role of altered toxicokinetics and metallothionein. Journal of Toxicology and Environmental Health Part A: Current Issues, 38, 171–182.

    Article  CAS  Google Scholar 

  • Wang, C. Q. (2011). Water stress mitigation by selenium in Trifolium repens L. Journal of Plant Nutrition and Soil Science, 174, 276–282.

    Article  CAS  Google Scholar 

  • Wang, Z., & Gao, Y. (2001). Biogeochemical cycling of selenium in Chinese environments. Applied Geochemistry, 16, 1345–1351.

    Article  CAS  Google Scholar 

  • Winkel, L. H. E., Vriens, B., Jones, G. D., Schneider, L. S., Pilon-Smits, E., & Bañuelos, G. S., (2015). Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients, 7, 4199–4239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whanger, P. D. (1981). Selenium and heavy metal toxicity. In: J. E. Spalholz, J. L. Martin, & H. E. Ganther, (Eds.), Selenium in biology and medicine (pp. 230-255). AVI Westport.

  • Whanger, P. D. (1992). Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis. Journal of Trace Elements and Electrolytes in Health and Disease, 6, 209–221.

    CAS  PubMed  Google Scholar 

  • White, C. L., Robson, A. D., & Fisher, H. M. (1981). Variation in nitrogen, sulfur, selenium, cobalt, manganese, copper and zinc contents of grain from wheat and two lupin species grown in a range of Mediterranean environments. Crop and Pasture Science, 32, 47–59.

    Article  CAS  Google Scholar 

  • Ximenez-Embun, P. (2004). Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. Journal of Agricultural and Food Chemistry, 52, 832–838.

    Article  CAS  PubMed  Google Scholar 

  • Xue, T., Hartikainen, H., & Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil, 237, 55–61.

    Article  CAS  Google Scholar 

  • Yang, F., Chen, L., Hu, Q., & Pan, G. (2003). Effect of the application of selenium on selenium content of soybean and its products. Biological Trace Element Research, 93, 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Yao, X., Chu, J., & Ba, C. (2010a). Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biological Trace Element Research, 136, 96–105.

    Article  CAS  PubMed  Google Scholar 

  • Yao, X., Chu, J., & Ba, C. (2010b). Responses of wheat roots to exogenous selenium supply under enhanced ultraviolet-B. Biological Trace Element Research, 137, 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Yao, X., Chu, J., & Wang, G. (2009). Effects of selenium on wheat seedlings under drought stress. Biological Trace Element Research, 130, 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Yao, X., Jianzhou, C., Xueli, H., Binbin, L., Jingmin, L., & Zhaowei, Y. (2013). Effects of selenium on agronomical characters of winter wheat exposed to enhanced ultraviolet-B. Ecotoxicology and Environmental Safety, 92, 320–326.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Luo, L., Yang, Ke, & Zhang, S. (2011). Influence of mycorrhizal inoculation on the accumulation and speciation of selenium in maize growing in selenite and selenate spiked soils. Pedobiologia, 54(5), 267–272.

    Article  CAS  Google Scholar 

  • Zhang, S., Jiang, H., Peng, S., & Korpelainen, H. C. (2010). Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. Journal of Experimental Botany, 62, 675–686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Y., Pan, G., Chen, J., & Hu, Q. (2003). Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant and Soil, 253, 437–443.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding has been provided by student fellowships from CSIR, BSR, and UGC, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Nayyar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kaur, N., Kaur, S. et al. Selenium as a nutrient in biostimulation and biofortification of cereals. Ind J Plant Physiol. 22, 1–15 (2017). https://doi.org/10.1007/s40502-016-0249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0249-9

Keywords

Navigation