Skip to main content

Advertisement

Log in

Engineering Vascularized Composite Tissues by Perfusion Decellularization/Recellularization: Review

  • Cellular Transplants (G Orlando, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In the field of tissue engineering, the “perfusion decellularization and recellularization” emerged over the last decade. This technique is generating a complex and perfusable acellular scaffolds (e.g., solid organ) from discarded living tissue. The present work aims to describe all studies in which this technique was applied to complex composite tissues, or one of their elementary tissues.

Recent Findings

A total of 25 experimental publications were found between 2009 and 2020. Studies interested skin/adipose, muscle and nerve flaps for elementary tissues, and larynx, ears, face, upper limbs, uterus, and penis grafts for complex tissue associations. Rat and human models were the most represented.

Summary

This review showed that the current total number of studies covering the entire topic of vascularized composite tissue engineering is only 25, with a majority published within the past 5 years. This promising area of research should be investigated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rifkin WJ, Bellamy JL, Kantar RS, Farber SJ, Diaz-Siso JR, Brecht LE, et al. Autologous reconstruction of a face transplant candidate. Craniomaxillofac Trauma Reconstr. 2019;12(2):150–5.

    Article  PubMed  Google Scholar 

  2. Schneeberger S, Petruzzo P, Morelon E, Hautz T, Kanitakis J, Weissenbacher A, et al. 20-year follow-up of two cases of bilateral hand transplantation. N Engl J Med. 2020;383(18):1791–2.

    Article  PubMed  Google Scholar 

  3. Gilbert Fernandez JJ, Febres-Cordero RG, Simpson RL. The untold story of the first hand transplant: dedicated to the memory of one of the great minds of the ecuadorian medical community and the world. J Reconstr Microsurg. 2019;35(3):163–7.

    Article  PubMed  Google Scholar 

  4. Dubernard JM, Owen E, Herzberg G, Lanzetta M, Martin X, Kapila H, et al. Human hand allograft: report on first 6 months. Lancet. 1999;353(9161):1315–20.

    Article  CAS  PubMed  Google Scholar 

  5. Brandacher G, Lee WP, Schneeberger S. Minimizing immunosuppression in hand transplantation. Expert Rev Clin Immunol. 2012;8(7):673–83 quiz 84.

    Article  CAS  PubMed  Google Scholar 

  6. Birchall MA, Lorenz RR, Berke GS, Genden EM, Haughey BH, Siemionow M, et al. Laryngeal transplantation in 2005: a review. Am J Transplant. 2006;6(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  7. Dubernard JM, Lengele B, Morelon E, Testelin S, Badet L, Moure C, et al. Outcomes 18 months after the first human partial face transplantation. N Engl J Med. 2007;357(24):2451–60.

    Article  CAS  PubMed  Google Scholar 

  8. Levi DM, Tzakis AG, Kato T, Madariaga J, Mittal NK, Nery J, et al. Transplantation of the abdominal wall. Lancet. 2003;361(9376):2173–6.

    Article  PubMed  Google Scholar 

  9. Brannstrom M, Johannesson L, Bokstrom H, Kvarnstrom N, Molne J. Dahm-Kahler P, et al. Livebirth after uterus transplantation. 2015;385(9968):607–16.

    Google Scholar 

  10. van der Merwe A, Graewe F, Zuhlke A, Barsdorf NW, Zarrabi AD, Viljoen JT, et al. 2017, Penile allotransplantation for penis amputation following ritual circumcision: a case report with 24 months of follow-up ;390(10099):1038-47.

  11. Szafran AA, Redett R, Burnett AL. Penile transplantation: the US experience and institutional program set-up. Transl Androl Urol. 2018;7(4):639–45.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dean WK, Talbot SG. Vascularized composite allotransplantation at a crossroad: adopting lessons from technology innovation to novel clinical applications. Transplantation. 2017;101(3):452–6.

    Article  PubMed  Google Scholar 

  13. Borg T-M, Yalamanchili S, Ghali S, Myers S, Holmes S, Ghanem A. A European perspective of the cost effectiveness of facial composite tissue allotransplantation. Eur J Plast Surg. 2020;43(3):219–24.

    Article  Google Scholar 

  14. Morelon E, Petruzzo P, Kanitakis J, Dakpe S, Thaunat O, Dubois V, et al. Face transplantation: partial graft loss of the first case ten years later. Am J Transplant. 2017;17:1935–40.

    Article  CAS  PubMed  Google Scholar 

  15. Kanitakis J, Petruzzo P, Badet L, Gazarian A, Thaunat O, Testelin S, et al. Chronic rejection in human vascularized composite allotransplantation (hand and face recipients): an update. Transplantation. 2016;100(10):2053–61.

    Article  PubMed  Google Scholar 

  16. Lantieri L, Cholley B, Lemogne C, Guillemain R, Ortonne N, Grimbert P, et al. 2020, First human facial retransplantation: 30-month follow-up. ;396(10264):1758-65.

  17. Shah Mohammadi M, Buchen JT, Pasquina PF. Niklason L. Jariwala SH. Critical considerations for regeneration of vascularized composite tissues. Tissue Eng Part B Rev: Alvarez LM; 2020.

    Google Scholar 

  18. Pashos NC, Graham DM, Burkett BJ, O’Donnell B, Sabol RA, Helm J, et al. Acellular biologic nipple-areolar complex graft: in vivo murine and nonhuman primate host response evaluation. Tissue Eng Part A. 2020;26:872–85.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  20. Peacock EE Jr. Homologous composite tissue grafts of the digital flexor mechanism in human beings. Transplant Bull. 1960;7:418–21.

    Article  PubMed  Google Scholar 

  21. Ravindra KV, Wu S, Bozulic L, Xu H, Breidenbach WC, Ildstad ST. Composite tissue transplantation: a rapidly advancing field. Transplant Proc. 2008;40(5):1237–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang EI, Bonillas RG, El-ftesi S, Chang EI, Ceradini DJ, Vial IN, et al. Tissue engineering using autologous microcirculatory beds as vascularized bioscaffolds. FASEB J. 2009;23(3):906–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Henderson PW, Nagineni VV, Harper A, Bavinck N, Sohn AM, Krijgh DD, et al. Development of an acellular bioengineered matrix with a dominant vascular pedicle. J Surg Res. 2010;164(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  24. Qu J, Van Hogezand RM, Zhao C, Kuo BJ, Carlsen BT. Decellularization of a fasciocutaneous flap for use as a perfusable scaffold. Ann Plast Surg. 2015;75(1):112–6.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Johnson JA, Dunne LW, Chen Y, Iyyanki T, Wu Y, et al. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps. Acta Biomater. 2016;35:166–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jank BJ, Goverman J, Guyette JP, Charest JM, Randolph M, Gaudette GR, et al. Creation of a bioengineered skin flap scaffold with a perfusable vascular pedicle. Tissue Eng Part A. 2017;23(13-14):696–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giatsidis G, Guyette JP, Ott HC, Orgill DP. Development of a large-volume human-derived adipose acellular allogenic flap by perfusion decellularization. Wound Repair Regen. 2018;26(2):245–50.

    Article  PubMed  Google Scholar 

  28. Zhang J, Hu ZQ, Turner NJ, Teng SF, Cheng WY, Zhou HY, et al. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Biomaterials. 2016;89:114–26.

    Article  CAS  PubMed  Google Scholar 

  29. Sabbagh MD, Roh SG, Liu J, Morsy M, Abu-Ghname A, Zhao C, et al. A quick and reliable method to decellularize a gracilis flap: a crucial step toward building a muscle. Ann Plast Surg. 2019;83(6):709–15.

    Article  CAS  PubMed  Google Scholar 

  30. Wuthrich T, Lese I, Haberthur D, Zubler C, Hlushchuk R, Hewer E, et al. Development of vascularized nerve scaffold using perfusion-decellularization and recellularization. Mater Sci Eng C Mater Biol Appl. 2020;117:111311.

    Article  CAS  PubMed  Google Scholar 

  31. Hou N, Cui P, Luo J, Ma R, Zhu L. Tissue-engineered larynx using perfusion-decellularized technique and mesenchymal stem cells in a rabbit model. Acta Otolaryngol. 2011;131(6):645–52.

    Article  CAS  PubMed  Google Scholar 

  32. Ma R, Li M, Luo J, Yu H, Sun Y, Cheng S, et al. Structural integrity, ECM components and immunogenicity of decellularized laryngeal scaffold with preserved cartilage. Biomaterials. 2013;34(7):1790–8.

    Article  CAS  PubMed  Google Scholar 

  33. Moser PT, Gerli M, Diercks GR, Evangelista-Leite D, Charest JM, Gershlak JR, et al. Creation of laryngeal grafts from primary human cells and decellularized laryngeal scaffolds. Tissue Eng Part A. 2020;26(9-10):543–55.

    Article  CAS  PubMed  Google Scholar 

  34. Duisit J, Orlando G, Debluts D, Maistriaux L, Xhema D, de Bisthoven YJ, et al. Decellularization of the porcine ear generates a biocompatible, nonimmunogenic extracellular matrix platform for face subunit bioengineering. Ann Surg. 2017.

  35. Duisit J, Amiel H, Wuthrich T, Taddeo A, Dedriche A, Destoop V, et al. Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering. Acta Biomater. 2018;73:339–54.

    Article  CAS  PubMed  Google Scholar 

  36. Duisit J, Amiel H, Orlando G, Dedriche A, Behets C, Gianello P, et al. Face graft scaffold production in a rat model. Plast Reconstr Surg. 2018;141(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  37. Duisit J, Maistriaux L, Taddeo A, Orlando G, Joris V, Coche E, et al. Bioengineering a human face graft: the matrix of identity. Ann Surg. 2017;266:754–64.

    Article  PubMed  Google Scholar 

  38. Jank BJ, Xiong L, Moser PT, Guyette JP, Ren X, Cetrulo CL, et al. Engineered composite tissue as a bioartificial limb graft. Biomaterials. 2015;61:246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gerli MFM, Guyette JP, Evangelista-Leite D, Ghoshhajra BB, Ott HC. Perfusion decellularization of a human limb: a novel platform for composite tissue engineering and reconstructive surgery. PLoS One. 2018;13(1):e0191497.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tan Y, Landford WN, Garza M, Suarez A, Zhou Z, Coon D. Complete human penile scaffold for composite tissue engineering: organ decellularization and characterization. Sci Rep. 2019;9(1):16368.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hellstrom M, El-Akouri RR, Sihlbom C, Olsson BM, Lengqvist J, Backdahl H, et al. Towards the development of a bioengineered uterus: comparison of different protocols for rat uterus decellularization. Acta Biomater. 2014;10(12):5034–42.

    Article  CAS  PubMed  Google Scholar 

  42. Miyazaki K, Maruyama T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials. 2014;35(31):8791–800.

    Article  CAS  PubMed  Google Scholar 

  43. Campo H, Baptista PM, Lopez-Perez N, Faus A, Cervello I, Simon C. De- and recellularization of the pig uterus: a bioengineering pilot study. Biol Reprod. 2017;96(1):34–45.

    Article  PubMed  Google Scholar 

  44. Padma AM, Tiemann TT, Alshaikh AB, Akouri R, Song MJ, Hellstrom M, Protocols for rat uterus isolation and decellularization: applications for uterus tissue engineering and 3D cell culturing 2018;1577:161-175.

  45. Daryabari SS, Kajbafzadeh AM, Fendereski K, Ghorbani F, Dehnavi M, Rostami M, et al. Development of an efficient perfusion-based protocol for whole-organ decellularization of the ovine uterus as a human-sized model and in vivo application of the bioscaffolds. J Assist Reprod Genet. 2019;36(6):1211–23.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tiemann TT, Padma AM, Sehic E, Backdahl H, Oltean M, Song MJ, et al. Towards uterus tissue engineering: a comparative study of sheep uterus decellularisation. Mol Hum Reprod. 2020;26(3):167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kajbafzadeh AM, Khorramirouz R, Akbarzadeh A, Sabetkish S, Sabetkish N, Saadat P, et al. A novel technique for simultaneous whole-body and multi-organ decellularization: umbilical artery catheterization as a perfusion-based method in a sheep foetus model. Int J Exp Pathol. 2015;96(2):116–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100(2):297–302 discussion 3-4.

    Article  CAS  PubMed  Google Scholar 

  49. Clites TR, Carty MJ, Ullauri JB, Carney ME, Mooney LM, Duval J-F, et al. Proprioception from a neurally controlled lower-extremity prosthesis. Sci Transl Med. 2018;10(443):eaap8373.

    Article  PubMed  Google Scholar 

  50. Duisit J, Maistriaux L, Gerdom A, Vergauwen M, Gianello P, Behets C, et al. Nose and lip graft variants: a subunit anatomical study. Plast Reconstr Surg. 2018;141(3):751–61.

    Article  CAS  PubMed  Google Scholar 

  51. Davidson EH, Wang EW, Yu JY, Fernandez-Miranda JC, Wang DJ, Richards N, et al. Total human eye allotransplantation: developing surgical protocols for donor and recipient procedures. Plast Reconstr Surg. 2016;138(6):1297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Badylak S. Perspective: work with, not against, biology. Nature. 2016;540(7632):S55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JD is supported by Fonds de Recherche Clinique (FRC), Cliniques Universitaires Saint-Luc/UCLouvain grant. LM is a “Fonds National de La Recherche Scientifique” (FNRS, Belgium) research fellow

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Duisit.

Ethics declarations

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cellular Transplant

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duisit, J., Maistriaux, L., Bertheuil, N. et al. Engineering Vascularized Composite Tissues by Perfusion Decellularization/Recellularization: Review. Curr Transpl Rep 8, 44–56 (2021). https://doi.org/10.1007/s40472-021-00317-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-021-00317-2

Keywords

Navigation