Skip to main content
Log in

Advances in Biomaterials for Promoting Vascularization

  • Artificial Tissues (A Atala and J G Hunsberger, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Tissue engineered constructs (TECs)—commonly developed using natural or synthetic biomaterials—are crucially needed for addressing the shortage of organ donations, immune rejection of transplants, pre-clinical in vitro drug efficacy testing, evaluation of personalized therapy options, and development of cell-laden substitutes for regenerative therapies. Unfortunately, constructs thicker than 200 microns suffer from poor diffusion rates of oxygen and nutrients needed for the survival of embedded cells as well as compliance of nearby tissue. To circumvent this challenge, biomaterials that promote vascularization are of upmost significance in the field of regenerative medicine. This article serves to review the current biomaterials (natural and synthetic) commonly utilized in the past few years to initiate and promote vascularization of TECs.

Recent Findings

Natural biomaterials have greater bioactivity compared to synthetic biomaterials; however, they suffer from uncontrollable rates of biodegradation, lack of batch-to-batch reproducibility, and low mechanical strength. Synthetic biomaterials, although also biocompatible and non-immunogenic, offer superior tunable mechanical strength and slow biodegradation rates. In the past few years, researchers have focused on making composite materials (combining natural and synthetic biomaterials or combining biomaterials with chemical additives), performing chemical modifications to circumvent subpar material performance properties, or utilizing techniques like electrospinning to fabricate fibrous networks resembling native ECM to promote vascularization.

Summary

The works reviewed in this article illustrate a variety of chemically, structurally, or compositionally modified natural and/or synthetic biomaterials capable of promoting vascularization of TECs. We believe future efforts in this avenue should include (1) methacrylation of dECM components, (2) inclusion of pre-vascularized constructs using on-chip technologies, (3) immobilization/integration of soluble angiogenic factors, (4) exploration of more versatile chemically modifications, (5) utilization of more non-cytotoxic crosslinking agents, (6) electrospinning technologies to mimic ECM architecture, and (7) implementation of additional environmental/structure factors to promote vascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rouwkema J, Rivron NC, Van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26(8):434–41. https://doi.org/10.1016/j.tibtech.2008.04.009.

    Article  PubMed  CAS  Google Scholar 

  2. Chapla R, West JL. Hydrogel biomaterials to support and guide vascularization. Progress in Biomedical Engineering. 2021;3(1): 012002. https://doi.org/10.1088/2516-1091/abc947.

    Article  Google Scholar 

  3. Jaklenec A, Stamp A, Deweerd E, Sherwin A, Langer R. Progress in the tissue engineering and stem cell industry “are we there yet?” Tissue Eng Part B Rev. 2012;18(3):155–66. https://doi.org/10.1089/ten.TEB.2011.0553.

    Article  PubMed  Google Scholar 

  4. Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev. 2012;18(5):363–82. https://doi.org/10.1089/ten.TEB.2012.0012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438(7070):937–45. https://doi.org/10.1038/nature04479.

    Article  PubMed  CAS  Google Scholar 

  6. Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol. 2000;50(1/2):1–15. https://doi.org/10.1023/a:1006493130855.

    Article  PubMed  CAS  Google Scholar 

  7. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307. https://doi.org/10.1038/nature10144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pal A, Vernon BL, Nikkhah M. Therapeutic neovascularization promoted by injectable hydrogels. Bioact Mater. 2018;3(4):389–400. https://doi.org/10.1016/j.bioactmat.2018.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VT, Nikkhah M, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–62. https://doi.org/10.1021/nn5020787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671–4. https://doi.org/10.1038/386671a0.

    Article  PubMed  CAS  Google Scholar 

  11. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–80. https://doi.org/10.1021/cr000108x.

    Article  PubMed  CAS  Google Scholar 

  12. Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. Prog Biomed Eng (Bristol). 2020;2(1). https://doi.org/10.1088/2516-1091/ab5637.

  13. Lee EJ, Kasper FK, Mikos AG. Biomaterials for tissue engineering. Ann Biomed Eng. 2014;42(2):323–37. https://doi.org/10.1007/s10439-013-0859-6.

    Article  PubMed  Google Scholar 

  14. Brouns JEP, Dankers PYW. Introduction of enzyme-responsivity in biomaterials to achieve dynamic reciprocity in cell–material interactions. Biomacromol. 2021;22(1):4–23. https://doi.org/10.1021/acs.biomac.0c00930.

    Article  CAS  Google Scholar 

  15. Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: Identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021;6(1):122. https://doi.org/10.1038/s41392-021-00512-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. • Pien N, Pezzoli D, Van Hoorick J, Copes F, Vansteenland M, Albu M, et al. Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: a superior alternative to methacrylated gelatin? Mater Sci Eng, C. 2021;130. Findings from this study was one of the first of its kind to methacrylate collagen to improve mechanical properties in tissue engineered constructs. Developing more unique ways to chemicaly modify natural polymers will provide additional options for hydrogel design and incorporation into TECs.

  17. Joy J, Pereira J, Aid-Launais R, Pavon-Djavid G, Ray AR, Letourneur D, et al. Gelatin — oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Int J Biol Macromol. 2018;107:1922–35. https://doi.org/10.1016/j.ijbiomac.2017.10.071.

    Article  PubMed  CAS  Google Scholar 

  18. Loureiro J, Torres AL, Neto T, Aguiar P, Barrias CC, Pinto MT, et al. Conjugation of the T1 sequence from CCN1 to fibrin hydrogels for therapeutic vascularization. Mater Sci Eng, C. 2019;104: 109847. https://doi.org/10.1016/j.msec.2019.109847.

    Article  CAS  Google Scholar 

  19. Yang R, Huang J, Zhang W, Xue W, Jiang Y, Li S, et al. Mechanoadaptive injectable hydrogel based on poly(γ-glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohyd Polym. 2021;273: 118607. https://doi.org/10.1016/j.carbpol.2021.118607.

    Article  CAS  Google Scholar 

  20. Jiang M, Pan Y, Liu Y, Dai K, Zhang Q, Wang J. Effect of sulfated chitosan hydrogel on vascularization and osteogenesis. Carbohyd Polym. 2022;281: 119059. https://doi.org/10.1016/j.carbpol.2021.119059.

    Article  CAS  Google Scholar 

  21. Fu W, Xu P, Feng B, Lu Y, Bai J, Zhang J, et al. A hydrogel derived from acellular blood vessel extracellular matrix to promote angiogenesis. J Biomater Appl. 2019;33(10):1301–13. https://doi.org/10.1177/0885328219831055.

    Article  PubMed  CAS  Google Scholar 

  22. Dikici S, Claeyssens F, Macneil S. Decellularised baby spinach leaves and their potential use in tissue engineering applications: studying and promoting neovascularisation. J Biomater Appl. 2019;34(4):546–59. https://doi.org/10.1177/0885328219863115.

    Article  PubMed  Google Scholar 

  23. Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res. 2008;63(5):492–6. https://doi.org/10.1203/pdr.0b013e31816c5bc3.

    Article  PubMed  CAS  Google Scholar 

  24. Karami A, Tebyanian H, Sayyad Soufdoost R, Motavallian E, Barkhordari A, Nourani MR. Extraction and characterization of collagen with cost-effective method from human placenta for biomedical applications. World J Plast Surg. 2019;8(3):352–8. https://doi.org/10.29252/wjps.8.3.352.

  25. Zanetti AS, Sabliov C, Gimble JM, Hayes DJ. Human adipose-derived stem cells and three-dimensional scaffold constructs: A review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater. 2013;101B(1):187–99. https://doi.org/10.1002/jbm.b.32817.

    Article  CAS  Google Scholar 

  26. Li X, Chen S, Li J, Wang X, Zhang J, Kawazoe N, et al. 3D culture of chondrocytes in gelatin hydrogels with different stiffness. Polymers (Basel). 2016;8(8). https://doi.org/10.3390/polym8080269.

  27. Soliman BG, Major GS, Atienza-Roca P, Murphy CA, Longoni A, Alcala-Orozco CR, et al. Development and characterization of gelatin-norbornene bioink to understand the interplay between physical architecture and micro-capillary formation in biofabricated vascularized constructs. Adv Healthc Mater. 2022;11(2): e2101873. https://doi.org/10.1002/adhm.202101873.

    Article  PubMed  CAS  Google Scholar 

  28. Navaei A, Rahmani Eliato K, Ros R, Migrino RQ, Willis BC, Nikkhah M. The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues. Biomaterials Science. 2019;7(2):585–95. https://doi.org/10.1039/C8BM01050A.

    Article  PubMed  CAS  Google Scholar 

  29. Nikkhah M, Akbari M, Paul A, Memic A, Dolatshahi-Pirouz A, Khademhosseini A. Gelatin-based biomaterials for tissue engineering and stem cell bioengineering. Biomaterials from Nature for Advanced Devices and Therapies. 2016;37–62.

  30. Joy J, Pereira J, Aid-Launais R, Pavon-Djavid G, Ray AR, Letourneur D, et al. Gelatin - Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Int J Biol Macromol. 2018;107(Pt B):1922–35. https://doi.org/10.1016/j.ijbiomac.2017.10.071.

    Article  PubMed  CAS  Google Scholar 

  31. Litvinov RI, Weisel JW. What is the biological and clinical relevance of fibrin? Semin Thromb Hemost. 2016;42(4):333–43. https://doi.org/10.1055/s-0036-1571342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci: Materials in Medicine. 2019;30(10). https://doi.org/10.1007/s10856-019-6318-7.

  33. Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomed. 2017;12:4937–61. https://doi.org/10.2147/ijn.s124671.

    Article  CAS  Google Scholar 

  34. Silva J, Bento AR, Barros D, Laundos TL, Sousa SR, Quelhas P, et al. Fibrin functionalization with synthetic adhesive ligands interacting with α6β1 integrin receptor enhance neurite outgrowth of embryonic stem cell-derived neural stem/progenitors. Acta Biomater. 2017;59:243–56. https://doi.org/10.1016/j.actbio.2017.07.013.

    Article  PubMed  CAS  Google Scholar 

  35. Leu S-J, Liu Y, Chen N, Chen C-C, Lam SCT, Lau LF. Identification of a novel integrin α6β1 binding site in the angiogenic inducer CCN1 (CYR61)*. J Biol Chem. 2003;278(36):33801–8. https://doi.org/10.1074/jbc.M305862200.

    Article  PubMed  CAS  Google Scholar 

  36. Weksler B, Romero IA, Couraud P-O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids and Barriers of the CNS. 2013;10(1):16. https://doi.org/10.1186/2045-8118-10-16.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter. 2012;8(12):3280–94. https://doi.org/10.1039/C2SM06463D.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zou Y, Li L, Li Y, Chen S, Xie X, Jin X, et al. Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel. ACS Appl Mater Interfaces. 2021;13(48):56892–908. https://doi.org/10.1021/acsami.1c16481.

    Article  PubMed  CAS  Google Scholar 

  39. Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology. 2012;4(3):253–8. https://doi.org/10.4161/derm.21923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhu Z, Wang Y-M, Yang J, Luo X-S. Hyaluronic acid: A versatile biomaterial in tissue engineering. Plastic and Aesthetic Research. 2017;4(12):219. https://doi.org/10.20517/2347-9264.2017.71.

  41. Bajaj I, Singhal R. Poly (glutamic acid) – an emerging biopolymer of commercial interest. Biores Technol. 2011;102(10):5551–61. https://doi.org/10.1016/j.biortech.2011.02.047.

    Article  CAS  Google Scholar 

  42. Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: Opportunities and challenges in biomedical applications. Chem Rev. 2018;118(14):6766–843. https://doi.org/10.1021/acs.chemrev.6b00275.

    Article  PubMed  CAS  Google Scholar 

  43. Bellich B, D’Agostino I, Semeraro S, Gamini A, Cesàro A. “The good, the bad and the ugly” of chitosans. Mar Drugs. 2016;14(5):99. https://doi.org/10.3390/md14050099.

    Article  PubMed Central  CAS  Google Scholar 

  44. He S, Wu J, Li SH, Wang L, Sun Y, Xie J, et al. The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure. Biomaterials. 2020;258: 120285. https://doi.org/10.1016/j.biomaterials.2020.120285.

    Article  PubMed  CAS  Google Scholar 

  45. Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020;5(7):539–51. https://doi.org/10.1038/s41578-020-0199-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tsui JH, Leonard A, Camp ND, Long JT, Nawas ZY, Chavanachat R, et al. Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems. Biomaterials. 2021;272: 120764. https://doi.org/10.1016/j.biomaterials.2021.120764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nelson JS, Heider A, Si MS, Ohye RG. Evaluation of explanted CorMatrix intracardiac patches in children with congenital heart disease. Ann Thorac Surg. 2016;102(4):1329–35. https://doi.org/10.1016/j.athoracsur.2016.03.086.

    Article  PubMed  Google Scholar 

  48. Greet Merckx HT, Melissa Lo Monaco, Marc van Zandvoort, Ward De Spiegelaere, Ivo Lambrichts, and Annelies Bronckaers. Chorioallantoic membrane assay as model for angiogenesis in tissue engineering: focus on stem cells. Tissue Engineering Part B: Reviews. 2020;26(6):519–39. https://doi.org/10.1089/ten.teb.2020.0048.

  49. Chai Y, Long Y, Dong X, Liu K, Wei W, Chen Y, et al. Improved functional recovery of rat transected spinal cord by peptide-grafted PNIPAM based hydrogel. Colloids Surf, B. 2022;210: 112220. https://doi.org/10.1016/j.colsurfb.2021.112220.

    Article  CAS  Google Scholar 

  50. • Wen M, Zhou F, Cui C, Zhao Y, Yuan X. Performance of TMC-g-PEG-VAPG/miRNA-145 complexes in electrospun membranes for target-regulating vascular SMCs. Colloids Surf, B. 2019;182: 110369. https://doi.org/10.1016/j.colsurfb.2019.110369. Findings from this study utilized an amalgamation of techniques to produce a novel material for TE. Authors used electrospinning, pro-angiogenic peptide mimetic sequences, pro-angiogenic miRNA, varying molecular weights of a natural biomaterials (chitosan), and a synthetic polymer (polyethylene glycol) to prevent adverse biological events like phagocytosis.

    Article  CAS  Google Scholar 

  51. Buschmann J, Andreoli S, Jang J-H, Gröninger O, Stark W, Opelz C, et al. Hybrid nanocomposite as a chest wall graft with improved vascularization by copper oxide nanoparticles. J Biomater Appl. 2022:088532822110656. https://doi.org/10.1177/08853282211065624.

  52. Hui X, Geng X, Jia L, Xu Z, Ye L, Gu Y, et al. Preparation and in vivo evaluation of surface heparinized small diameter tissue engineered vascular scaffolds of poly(ε-caprolactone) embedded with collagen suture. J Biomater Appl. 2020;34(6):812–26. https://doi.org/10.1177/0885328219873174.

    Article  PubMed  CAS  Google Scholar 

  53. Mostafavi A, Daemi H, Rajabi S, Baharvand H. Highly tough and ultrafast self-healable dual physically crosslinked sulfated alginate-based polyurethane elastomers for vascular tissue engineering. Carbohyd Polym. 2021;257: 117632. https://doi.org/10.1016/j.carbpol.2021.117632.

    Article  CAS  Google Scholar 

  54. Pal A, Smith CI, Palade J, Nagaraju S, Alarcon-Benedetto BA, Kilbourne J, et al. Poly(N-isopropylacrylamide)-based dual-crosslinking biohybrid injectable hydrogels for vascularization. Acta Biomater. 2020;107:138–51. https://doi.org/10.1016/j.actbio.2020.02.041.

    Article  PubMed  CAS  Google Scholar 

  55. Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, et al. Poly(N-isopropylacrylamide)-based thermoresponsive composite hydrogels for biomedical applications. Polymers. 2020;12(3):580. https://doi.org/10.3390/polym12030580.

    Article  PubMed Central  CAS  Google Scholar 

  56. Li X, Liu X, Josey B, Chou CJ, Tan Y, Zhang N, et al. Short laminin peptide for improved neural stem cell growth. Stem Cells Transl Med. 2014;3(5):662–70. https://doi.org/10.5966/sctm.2013-0015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nakamura M, Yamaguchi K, Mie M, Nakamura M, Akita K, Kobatake E. Promotion of angiogenesis by an artificial extracellular matrix protein containing the laminin-1-derived IKVAV sequence. Bioconjug Chem. 2009;20(9):1759–64. https://doi.org/10.1021/bc900126b.

    Article  PubMed  CAS  Google Scholar 

  58. Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14(13):2202–11. https://doi.org/10.1039/c4lc00030g.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Burke G, Cao Z, Devine DM, Major I. Preparation of biodegradable polyethylene glycol dimethacrylate hydrogels via thiol-ene chemistry. Polymers (Basel). 2019;11(8). https://doi.org/10.3390/polym11081339.

  60. Son KH, Lee JW. Synthesis and characterization of poly(ethylene glycol) based thermo-responsive hydrogels for cell sheet engineering. Materials (Basel). 2016;9(10). https://doi.org/10.3390/ma9100854.

  61. Ye D, Shen Z, Zhou S. Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment. Cancer Manag Res. 2019;11:969–79. https://doi.org/10.2147/CMAR.S191696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release. 2012;161(2):505–22. https://doi.org/10.1016/j.jconrel.2012.01.043.

    Article  PubMed  CAS  Google Scholar 

  63. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97. https://doi.org/10.3390/polym3031377.

    Article  PubMed  CAS  Google Scholar 

  64. Sanna S, Brandolini J, Pardolesi A, Argnani D, Mengozzi M, Dell'Amore A, et al. Materials and techniques in chest wall reconstruction: a review. J Vis Surg. 2017;3:95-. https://doi.org/10.21037/jovs.2017.06.10.

  65. Xie H, Kang YJ. Role of copper in angiogenesis and its medicinal implications. Curr Med Chem. 2009;16(10):1304–14. https://doi.org/10.2174/092986709787846622.

    Article  PubMed  CAS  Google Scholar 

  66. He Y, Ye G, Song C, Li C, Xiong W, Yu L, et al. Mussel-inspired conductive nanofibrous membranes repair myocardial infarction by enhancing cardiac function and revascularization. Theranostics. 2018;8(18):5159–77. https://doi.org/10.7150/thno.27760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rungrod A, Kapanya A, Punyodom W, Molloy R, Meerak J, Somsunan R. Synthesis of poly(epsilon-caprolactone) diacrylate for micelle-cross-linked sodium AMPS hydrogel for use as controlled drug delivery wound dressing. Biomacromol. 2021;22(9):3839–59. https://doi.org/10.1021/acs.biomac.1c00683.

    Article  CAS  Google Scholar 

  68. Xu C, Hong Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioactive Materials. 2022;15:250–71. https://doi.org/10.1016/j.bioactmat.2021.11.029.

    Article  PubMed  CAS  Google Scholar 

  69. Xie J, Yao Y, Wang S, Fan L, Ding J, Gao Y, et al. Alleviating oxidative injury of myocardial infarction by a fibrous polyurethane patch with condensed ROS-scavenging backbone Units. Adv Healthc Mater. 2022;11(4): e2101855. https://doi.org/10.1002/adhm.202101855.

    Article  PubMed  CAS  Google Scholar 

  70. Kamaci M. Polyurethane-based hydrogels for controlled drug delivery applications. European Polymer J. 2020;123. https://doi.org/10.1016/j.eurpolymj.2019.109444.

Download references

Funding

Drs. Nelson and Nikkhah report funding provided by the Phoenix Children’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald A. Nelson Jr. or Mehdi Nikkhah.

Ethics declarations

Conflict of Interest

Dr. Alaeddine reports grants from Nonfibrotic Conductive Implantable Biomaterials for Pacemaker Electrode Coating from Leadership Circle (nonprofit).

The other authors have no disclosures to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Artificial Tissues

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, R.A., Rhee, E.K., Alaeddine, M. et al. Advances in Biomaterials for Promoting Vascularization. Curr Stem Cell Rep 8, 184–196 (2022). https://doi.org/10.1007/s40778-022-00217-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-022-00217-w

Keywords

Navigation