Skip to main content
Log in

State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

Nanomaterials composed of metals and metal alloys are the most valuable components in emerging micro- and nano-electronic devices and innovations to date. The composition of these nanomaterials, their quantum chemical and physical properties, and their production methods are in critical need of summarization, so that a complete state of the art of the present and future of nanotechnologies can be presented. In this review, we report on the most recent activities and results in the fields of spintronics, nanophotonics, and nanomagnetics, with particular emphasis on metallic nanoparticles in alloys and pure metals, as well as in organic combinations and in relation to carbon-based nanostructures. This review shows that the combinatory synthesis of alloys with rare metals, such as scandium, yttrium, and rare earths imparts valuable qualities to high-magnetic-field compounds, and provides unique properties with emphasis on nanoelectronic and computational components. In this review, we also shed light on the methods of synthesis and the background of spintronic, nanomagnetic, and nanophotonic materials, with applications in optics, diagnostics, nanoelectronics, and computational nanotechnology. The review is important for the industrial development of novel materials, and for summarizing both fabrication and manufacturing methods, as well as principles and functions of metallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Image reproduced with permissions from Chakraverty et al. [126] Copyright© 2006 American Institute of Physics)

Fig. 5

(Image reproduced with permissions from Dutta et al. [147] Copyright© 2013 American Chemical Society)

Fig. 6
Fig. 7
Fig. 8

(Gold nanoparticles synthesized in the algae Prasiola crispa chloroauric acid by Sharma et al. [182]. Reproduced with permissions. © 2013 Elsevier B. V. All rights reserved)

Similar content being viewed by others

References

  1. Trauzettel B, Bulaev DV, Loss D et al (2007) Spin qubits in graphene quantum dots. Nat Phys 3:192–196

    Article  Google Scholar 

  2. Zhu S, Zhang J, Qiao C et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860

    Article  Google Scholar 

  3. Pradhan A, Holloway T, Mundle R et al (2012) Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons. Appl Phys Lett 100:061127

    Article  Google Scholar 

  4. Park K, Lee M, Liu Y et al (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999–3004

    Article  Google Scholar 

  5. Gittins DI, Bethell D, Schiffrin DJ et al (2000) A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408:67–69

    Article  Google Scholar 

  6. Huang Y, Duan X, Lieber CM (2005) Nanowires for integrated multicolor nanophotonics. Small 1:142–147

    Article  Google Scholar 

  7. Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, Netherlands

    Book  Google Scholar 

  8. Wolf SA, Lu J, Stan MR et al (2010) The promise of nanomagnetics and spintronics for future logic and universal memory. Proc IEEE 98:2155–2168

    Article  Google Scholar 

  9. Awschalom DD, Flatté ME (2007) Challenges for semiconductor spintronics. Nat Phys 3:153–159

    Article  Google Scholar 

  10. Wolf S, Awschalom D, Buhrman R et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495

    Article  Google Scholar 

  11. Mourachkine A, Yazyev O, Ducati C et al (2008) Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field. Nano Lett 8:3683–3687

    Article  Google Scholar 

  12. Ohtsu M, Kobayashi K, Kawazoe T et al (2002) Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J Sel Top Quantum Electron 8:839–862

    Article  Google Scholar 

  13. Qian F, Li Y, Gradecak S et al (2004) Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett 4(10):1975–1979

    Article  Google Scholar 

  14. Žutić I, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323

    Article  Google Scholar 

  15. Ling X, Zhou X, Shu W et al (2013) Realization of tunable photonic spin hall effect by tailoring the Pancharatnam-Berry phase. Sci Rep 5:5557

    Google Scholar 

  16. Thibeault SA, Kang JH, Sauti G et al (2015) Nanomaterials for radiation shielding. MRS Bull 40:836–841

    Article  Google Scholar 

  17. Xu X, Yao W, Xiao D et al (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10:343–350

    Article  Google Scholar 

  18. McAlister S (1978) The hall effect in spin glasses. J Appl Phys 49:1616–1621

    Article  Google Scholar 

  19. Senthil T, Marston J, Fisher MP (1999) Spin quantum hall effect in unconventional superconductors. Phys Rev B 60(6):4245–4254

    Article  Google Scholar 

  20. Hirsch JE (1999) Spin hall effect. Phys Rev Lett 83(9):1834–1837

    Article  MathSciNet  Google Scholar 

  21. Dyakonov M, Perel V (1971) Possibility of orienting electron spins with current. Sov J Exp Theor Phys Lett 13:467–469

    Google Scholar 

  22. Girvin SM (1999) The quantum hall effect: novel excitations and broken symmetries. In: Comtet A, Jolicoeur T, Ouvry S et al (eds) Topological aspects of low dimensional systems. Springer, Berlin, pp 53–175

    Google Scholar 

  23. Laughlin RB (1983) Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys Rev Lett 50:1395–1398

    Article  Google Scholar 

  24. Burr GW, Kurdi BN, Scott JC et al (2008) Overview of candidate device technologies for storage-class memory. IBM J Res Dev 52:449–464

    Article  Google Scholar 

  25. Wang KL, Alzate JG, Amiri PK (2013) Low-power non-volatile spintronic memory: STT-RAM and beyond. J Phys Appl Phys 46(7):074003

    Article  Google Scholar 

  26. Wang X, Keshtbod P, Wang Z et al (2015) Spin-orbitronics memory device with matching and self-reference functionality. IEEE Trans Magn 51:1–4

    Google Scholar 

  27. Jiang Z, Zhang Y, Tan YW et al (2007) Quantum hall effect in graphene. Solid State Commun 143(1–2):14–19

    Article  Google Scholar 

  28. Zibouche N, Philipsen P, Kuc A et al (2014) Transition-metal dichalcogenide bilayers: switching materials for spintronic and valleytronic applications. Phys Rev B 90:125440

    Article  Google Scholar 

  29. Chua C, Connolly M, Lartsev A et al (2014) Quantum hall effect and quantum point contact in bilayer-patched epitaxial graphene. Nano Lett 14:3369–3373

    Article  Google Scholar 

  30. Klitzing KV (1995) Physics and application of the quantum hall effect. Phys B Condens Matter 204(1–4):111–116

    Article  Google Scholar 

  31. Kirchain R, Kimerling L (2007) A roadmap for nanophotonics. Nat Photonics 1:303–305

    Article  Google Scholar 

  32. Cortes C, Newman W, Molesky S et al (2012) Quantum nanophotonics using hyperbolic metamaterials. J Opt 14(6):063001

    Article  Google Scholar 

  33. Shen Y, Friend CS, Jiang Y et al (2000) Nanophotonics: interactions, materials, and applications. J Phys Chem B 104:7577–7587

    Article  Google Scholar 

  34. Callahan DM, Munday JN, Atwater HA (2012) Solar cell light trapping beyond the ray optic limit. Nano Lett 12:214–218

    Article  Google Scholar 

  35. Yu Z, Raman A, Fan S (2010) Fundamental limit of nanophotonic light trapping in solar cells. Proc Natl Acad Sci 107:17491–17496

    Article  Google Scholar 

  36. Mokkapati S, Catchpole K (2012) Nanophotonic light trapping in solar cells. J Appl Phys 112:101101

    Article  Google Scholar 

  37. Teperik TV, De Abajo FG, Borisov A et al (2008) Omnidirectional absorption in nanostructured metal surfaces. Nat Photonics 2:299–301

    Article  Google Scholar 

  38. Podolskiy VA, Sarychev AK, Shalaev VM (2002) Plasmon modes in metal nanowires and left-handed materials. J Nonlinear Opt Phys Mater 11:65–74

    Article  Google Scholar 

  39. Polman A (2008) Plasmonics applied. Science 322:868–869

    Article  Google Scholar 

  40. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  41. Green MA, Pillai S (2012) Harnessing plasmonics for solar cells. Nat Photonics 6:130–132

    Article  Google Scholar 

  42. Delacour C, Blaize S, Grosse P et al (2010) Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. Nano Lett 10:2922–2926

    Article  Google Scholar 

  43. Tsakalakos L, Balch J, Fronheiser J et al (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117

    Article  Google Scholar 

  44. Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(8):591

    Google Scholar 

  45. Ferrell T, Sharp S, Warmack R (1992) Progress in photon scanning tunneling microscopy (PSTM). Ultramicroscopy 42:408–415

    Article  Google Scholar 

  46. Paesler M, Moyer P, Jahncke C et al (1990) Analytical photon scanning tunneling microscopy. Phys Rev B 42:6750

    Article  Google Scholar 

  47. Bourillot E, Fornel FD, Goudonnet JP et al (1995) Imaging of test quartz gratings with a photon scanning tunneling microscope: experiment and theory. J Opt Soc Am A 12(8):1749–1764

    Article  Google Scholar 

  48. Carminati R, Greffet JJ (1995) Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function. Opt Commun 116:316–321

    Article  Google Scholar 

  49. Skomski R (2003) Nanomagnetics. J Phys Condens Matter 15:R841

    Article  Google Scholar 

  50. Saywell A, Magnano G, Satterley CJ et al (2010) Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat Commun 1:75

    Article  Google Scholar 

  51. del Carmen Giménez-López M, Moro F, La Torre A et al (2011) Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2:407

    Article  Google Scholar 

  52. Manzetti S (2013) Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf 1(3):198–210

    Article  Google Scholar 

  53. Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793

    Article  Google Scholar 

  54. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    Article  Google Scholar 

  55. Rokhvarger AE, Chigirinsky LA (2004) Design and nanofabrication of superconductor ceramic strands and customized leads. Int J Appl Ceram Technol 1:129–139

    Article  Google Scholar 

  56. Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558

    Article  Google Scholar 

  57. Welser J, Wolf SA, Avouris P et al (2011) Applications: nanoelectronics and nanomagnetics. In: Nanotechnol. Res. Dir. Soc. Needs 2020. Springer, Berlin, pp 375–415

  58. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186

    Article  Google Scholar 

  59. Manzetti S, Lu T (2013) Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires. RSC Adv 3:25881–25890

    Article  Google Scholar 

  60. Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831–6847

    Article  Google Scholar 

  61. Vetrone F, Naccache R, Zamarron A et al (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4:3254–3258

    Article  Google Scholar 

  62. Bünzli JCG, Comby S, Chauvin AS et al (2007) New opportunities for lanthanide luminescence. J Rare Earths 25:257–274

    Article  Google Scholar 

  63. Bloss W, Sham L, Vinter V (1979) Interaction-induced transition at low densities in silicon inversion layer. Phys Rev Lett 43:1529

    Article  Google Scholar 

  64. Cserti J, Dávid G (2006) Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems. Phys Rev B 74:172305

    Article  Google Scholar 

  65. Manzetti S, Patek M (2016) The accurate wavefunction of the active space of the rhenium dimer resolved using the ab initio Brueckner coupled-cluster method. Struct Chem 27(4):1071–1080

    Article  Google Scholar 

  66. Tulapurkar A, Suzuki Y, Fukushima A et al (2005) Spin-torque diode effect in magnetic tunnel junctions. Nature 438:339–342

    Article  Google Scholar 

  67. Ohno H (2010) A window on the future of spintronics. Nat Mater 9:952–954

    Article  Google Scholar 

  68. Locatelli N, Cros V, Grollier J (2014) Spin-torque building blocks. Nat Mater 13:11–20

    Article  Google Scholar 

  69. Mai C, Barrette A, Yu Y et al (2013) Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett 14:202–206

    Article  Google Scholar 

  70. Zeng M, Feng Y, Liang G (2011) Graphene-based spin caloritronics. Nano Lett 11:1369–1373

    Article  Google Scholar 

  71. Myoung N, Seo K, Lee SJ et al (2013) Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures. ACS Nano 7:7021–7027

    Article  Google Scholar 

  72. Cheng Y, Zhu Z, Tahir M et al (2013) Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. EPL Europhys Lett 102:57001

    Article  Google Scholar 

  73. Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si I: formulation by extended zone effective mass theory. J Phys Soc Jpn 43:907–916

    Article  Google Scholar 

  74. Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si II: electric break through. J Phys Soc Jpn 43:917–924

    Article  Google Scholar 

  75. Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si III: enhancement of splittings by many-body effects. J Phys Soc Jpn 43:925–932

    Article  Google Scholar 

  76. Behnia K (2012) Condensed-matter physics: polarized light boosts valleytronics. Nat Nanotechnol 7:488–489

    Article  Google Scholar 

  77. Ezawa M (2013) Spin valleytronics in silicene: quantum spin hall-quantum anomalous hall insulators and single-valley semimetals. Phys Rev B 87:155415

    Article  Google Scholar 

  78. Ezawa M (2014) Valleytronics on the surface of a topological crystalline insulator: elliptic dichroism and valley-selective optical pumping. Phys Rev B 89:195413

    Article  Google Scholar 

  79. Nebel CE (2013) Valleytronics: electrons dance in diamond. Nat Mater 12:690–691

    Article  Google Scholar 

  80. Maassen J, Ji W, Guo H (2010) Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett 11:151–155

    Article  Google Scholar 

  81. Novoselov K, Blake P, Katsnelson M (2001) Graphene: electronic properties. Encycl Mater Sci Technol 244:1–6

  82. Pronschinske A, Pedevilla P, Murphy CJ et al (2015) Enhancement of low-energy electron emission in 2D radioactive films. Nat Mater 14:904–907

    Article  Google Scholar 

  83. Sundaram SK, Mazur E (2002) Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater 1:217–224

    Article  Google Scholar 

  84. Sanche L (2015) Cancer treatment: low-energy electron therapy. Nat Mater 14:861–863

    Article  Google Scholar 

  85. Mattheiss LF (1973) Energy bands for 2H–Nb Se2 and 2H–Mo S2. Phys Rev Lett 30:784–787

    Article  Google Scholar 

  86. Mattheiss LF (1966) Band structure and Fermi surface for rhenium. Phys Rev 151:450–464

    Article  Google Scholar 

  87. Mattheiss LF (1973) Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B 8:3719–3740

    Article  Google Scholar 

  88. Te Velde G, Bickelhaupt FM, Baerends EJ et al (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  89. Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070

    Article  MATH  Google Scholar 

  90. Schrödinger E (1940) A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proceedings of the Royal Irish Academy, pp 9–16

  91. Tahir M, Schwingenschlögl U (2013) Valley polarized quantum hall effect and topological insulator phase transitions in silicene. Sci Rep 3:1075

    Article  Google Scholar 

  92. Kaloni TP, Singh N, Schwingenschlögl U (2014) Prediction of a quantum anomalous hall state in Co-decorated silicene. Phys Rev B 89(3):208–220

    Article  Google Scholar 

  93. Liu CC, Feng W, Yao Y (2011) Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107(7):2989–2996

    Article  Google Scholar 

  94. Zhang XL, Liu LF, Liu WM (2013) Quantum anomalous hall effect and tunable topological states in 3D transition metals doped silicene. Sci Rep 3:2908

  95. Wu G, Lue NY, Chang L (2011) Graphene quantum dots for valley-based quantum computing: a feasibility study. Phys Rev B 84:195463

    Article  Google Scholar 

  96. Lee MK, Lue NY, Wen CK et al (2012) Valley-based field-effect transistors in graphene. Phys Rev B 86:165411

    Article  Google Scholar 

  97. Macià F, Kent AD, Hoppensteadt FC (2011) Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22:95301

    Article  Google Scholar 

  98. Wang X, Chen Y, Xi H et al (2009) Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett 30:294–297

    Article  Google Scholar 

  99. Kainuma R, Imano Y, Ito W et al (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439:957–960

    Article  Google Scholar 

  100. Mañosa L, González-Alonso D, Planes A et al (2010) Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat Mater 9:478–481

    Article  Google Scholar 

  101. Krenke T, Duman E, Acet M et al (2005) Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater 4:450–454

    Article  Google Scholar 

  102. Khalsa G, Stiles MD, Grollier J (2015) Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection. Appl Phys Lett 106:242402

  103. Locatelli N, Mizrahi A, Accioly A et al (2014) Noise-enhanced synchronization of stochastic magnetic oscillators. Phys Rev Appl 2:034009

    Article  Google Scholar 

  104. Keatley P, Gangmei P, Dvornik M et al (2013) Isolating the dynamic dipolar interaction between a pair of nanoscale ferromagnetic disks. Phys Rev Lett 110:187202

    Article  Google Scholar 

  105. Barber D, Freestone I (1990) An investigation of the origin of the colour of the Lycurgus cup by analytical transmission electron microscopy. Archaeometry 32:33–45

    Article  Google Scholar 

  106. Webb JA, Bardhan R (2014) Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 6:2502–2530

    Article  Google Scholar 

  107. Anker JN, Hall WP, Lyandres O et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  Google Scholar 

  108. Hellebust A, Richards-Kortum R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomed 7:429–445

    Article  Google Scholar 

  109. Sanders M, Lin Y, Wei J et al (2014) An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens Bioelectron 61:95–101

    Article  Google Scholar 

  110. Xu LJ, Zong C, Zheng XS et al (2014) Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal Chem 86:2238–2245

    Article  Google Scholar 

  111. Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3

    Article  Google Scholar 

  112. Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alex J Med 47:1–9

    Article  Google Scholar 

  113. Carregal-Romero S, Ochs M, Rivera-Gil P et al (2012) NIR-light triggered delivery of macromolecules into the cytosol. J Controll Release 159:120–127

    Article  Google Scholar 

  114. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113

    Article  Google Scholar 

  115. Lim S, Mar W, Matheu P et al (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101:104309

    Article  Google Scholar 

  116. Zhang D, Yang X, Hong X et al (2015) Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance. Opt Quantum Electron 47:1421–1427

    Article  Google Scholar 

  117. Martín-Rodríguez R, Geitenbeek R, Meijerink A (2013) Incorporation and luminescence of Yb3+ in CdSe nanocrystals. J Am Chem Soc 135:13668–13671

    Article  Google Scholar 

  118. Mukherjee P, Sloan RF, Shade CM et al (2013) A postsynthetic modification of II–VI semiconductor nanoparticles to create Tb3+ and Eu3+ luminophores. J Phys Chem C 117:14451–14460

    Article  Google Scholar 

  119. Chen CJ, Haik Y, Chatterjee J (2004) Nanomagnetics in biotechnology. In: Proceedings of the international workshop on materials analysis and processing in magnetic fields, Tallahassee, Florida, 17–19 March 2004

  120. Shamim N, Hong L, Hidajat K et al (2007) Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization. Colloids Surf B Biointerfaces 55:51–58

    Article  Google Scholar 

  121. Shamim N, Liang H, Hidajat K et al (2008) Adsorption, desorption, and conformational changes of lysozyme from thermosensitive nanomagnetic particles. J Colloid Interface Sci 320:15–21

    Article  Google Scholar 

  122. Horng HE, Yang SY, Huang Y et al (2005) Nanomagnetic particles for SQUID-based magnetically labeled immunoassay. IEEE Trans Appl Supercond 15:668–671

    Article  Google Scholar 

  123. Parekh K, Upadhyay R (2010) Static and dynamic magnetic properties of monodispersed Mn0.5Zn0.5Fe2O4 nanomagnetic particles. J Appl Phys 107:053907

    Article  Google Scholar 

  124. Taketomi S (1998) Spin-glass-like complex susceptibility of frozen magnetic fluids. Phys Rev E 57:3073

    Article  Google Scholar 

  125. Yoo SK, Lee SY (2000) Geometrical phase effects in biaxial nanomagnetic particles. Phys Rev B 62:5713–5718

    Article  Google Scholar 

  126. Chakraverty S, Ghosh B, Kumar S et al (2006) Magnetic coding in systems of nanomagnetic particles. Appl Phys Lett 88:042501

    Article  Google Scholar 

  127. Miller J, Kropf A, Zha Y et al (2006) The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. J Catal 240:222–234

    Article  Google Scholar 

  128. Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  Google Scholar 

  129. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  Google Scholar 

  130. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  Google Scholar 

  131. Sreeprasad T, Nguyen P, Kim N et al (2013) Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett 13:4434–4441

    Article  Google Scholar 

  132. Gawande MB, Shelke SN, Zboril R et al (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348

    Article  Google Scholar 

  133. Komarneni S, Li D, Newalkar B et al (2002) Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18:5959–5962

    Article  Google Scholar 

  134. Zhao Y, Zhu J, Hong J et al (2004) Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem 2004:4072–4080

    Article  Google Scholar 

  135. Cheng W, Cheng HW (2009) Synthesis and characterization of cobalt nano-particles through microwave polyol process. AIChE J 55:1383–1389

    Article  Google Scholar 

  136. Komarneni S, Roy R, Li Q (1992) Microwave-hydrothermal synthesis of ceramic powders. Mater Res Bull 27:1393–1405

    Article  Google Scholar 

  137. Gao F, Lu Q, Komarneni S (2005) Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856–860

    Article  Google Scholar 

  138. Manzetti S (2017) NANOGEL: Synthesis of cadmium nanoparticles from a carefully selected ionic liquid of Cd2+ and benzoic acid. www.fjordforsk.no/nanogel.php

  139. Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126:3026–3027

    Article  Google Scholar 

  140. Grzelczak M, Pérez-Juste J, Mulvaney P et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  Google Scholar 

  141. Yin B, Ma H, Wang S et al (2003) Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J Phys Chem B 107:8898–8904

    Article  Google Scholar 

  142. Guo D, Li H (2004) Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem Commun 6:999–1003

    Article  Google Scholar 

  143. Manzetti S, Andersen O, Garcia C et al (2016) Molecular simulation of carbon nanotubes as sorptive materials: sorption effects towards retene, perylene and cholesterol to 100 degrees Celsius and above. Mol Simul 14:1–10

  144. Manzetti S (2012) Chemical and electronic properties of polycyclic aromatic hydrocarbons: a review. Handb Polycycl Aromat Hydrocarb Chem Occur Health Issues 309–330

  145. Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688

    Article  Google Scholar 

  146. Xing G, Wang D, Cheng CJ et al (2013) Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: towards oxide spinterfaces. Appl Phys Lett 103:022402

    Article  Google Scholar 

  147. Dutta DP, Mandal BP, Naik R et al (2013) Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J Phys Chem C 117:2382–2389

    Article  Google Scholar 

  148. Ghosh S, Yang R, Kaumeyer M et al (2014) Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing. ACS Appl Mater Interfaces 6:3099–3104

    Article  Google Scholar 

  149. Chen D, Yu Y, Huang F et al (2010) Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J Am Chem Soc 132:9976–9978

    Article  Google Scholar 

  150. Yang Y, Jin Y, He H et al (2010) Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. J Am Chem Soc 132:13381–13394

    Article  Google Scholar 

  151. Pal S, Bhunia A, Jana PP et al (2015) Microporous La–metal–organic framework (MOF) with large surface area. Chem Eur J 21:2789–2792

    Article  Google Scholar 

  152. Dey R, Bhattacharya B, Pachfule P et al (2014) Flexible dicarboxylate based pillar-layer metal organic frameworks: differences in structure and porosity by tuning the pyridyl based N, N′ linkers. Cryst Eng Commun 16:2305–2316

    Article  Google Scholar 

  153. Liu BH, Ding J, Zhong Z et al (2002) Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method. Chem Phys Lett 358:96–102

    Article  Google Scholar 

  154. Lowndes DH, Rouleau CM, Thundat T et al (1998) Silicon and zinc telluride nanoparticles synthesized by pulsed laser ablation: size distributions and nanoscale structure. Appl Surf Sci 127:355–361

    Article  Google Scholar 

  155. Mafuné F, Kohno J, Takeda Y et al (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    Article  Google Scholar 

  156. Mafuné F, Kohno J, Takeda Y et al (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337

    Article  Google Scholar 

  157. Becker MF, Brock JR, Cai H et al (1998) Nanoparticles generated by laser ablation. Conf Lasers Electro-Opt 10(5):151–152

    Google Scholar 

  158. Sen P, Ghosh J, Abdullah A et al (2003) Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J Chem Sci 115:499–508

    Article  Google Scholar 

  159. Andrievski R (2003) Modern nanoparticle research in Russia. J Nanoparticle Res 5:415–418

    Article  Google Scholar 

  160. Goswami N, Sen P (2004) Water-induced stabilization of ZnS nanoparticles. Solid State Commun 132:791–794

    Article  Google Scholar 

  161. Phillips J, Perry WL, Kroenke WJ (2004) Method for producing metallic nanoparticles. U.S. Patent No. 6,689,192, 10 February 2004

  162. Bica I (1999) Nanoparticle production by plasma. Mater Sci Eng B 68:5–9

    Article  Google Scholar 

  163. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8:127–133

    Article  Google Scholar 

  164. Kaneko T, Hatakeyama R, Takahashi S (2013) Plasma process on ionic liquid substrate for morphology controlled nanoparticles. INTECH Open Access Publisher. Chapter 24

  165. Graneau P (1983) First indication of Ampere tension in solid electric conductors. Phys Lett A 97:253–255

    Article  Google Scholar 

  166. Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821

    Article  Google Scholar 

  167. Sajti CL, Sattari R, Chichkov BN et al (2010) Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J Phys Chem C 114:2421–2427

    Article  Google Scholar 

  168. Abdolvand A, Khan SZ, Yuan Y et al (2008) Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser. Appl Phys A 91:365–368

    Article  Google Scholar 

  169. Wang X, Shephard JD, Dear FC et al (2008) Optimized nanosecond pulsed laser micromachining of Y-TZP ceramics. J Am Ceram Soc 91:391–397

    Article  Google Scholar 

  170. Borysiuk J, Grabias A, Szczytko J et al (2008) Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon 46:1693–1701

    Article  Google Scholar 

  171. Scott JHJ, Majetich SA (1995) Morphology, structure, and growth of nanoparticles produced in a carbon arc. Phys Rev B 52:12564–12571

    Article  Google Scholar 

  172. Delaunay JJ, Hayashi T, Tomita M et al (1997) CoPt-C nanogranular magnetic thin films. Appl Phys Lett 71:3427–3429

    Article  Google Scholar 

  173. Li T, Yan H, Wang H et al (2005) CoPt/C nanogranular magnetic thin film. Int J Mod Phys B 19:2261–2271

    Article  Google Scholar 

  174. Lu Y, Zhu Z, Liu Z (2005) Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43:369–374

    Article  Google Scholar 

  175. Hayashi T, Hirono S, Tomita M et al (1997) Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Cambridge University Press, Cambridge, p 33

    Google Scholar 

  176. Harris P, Tsang S (1998) A simple technique for the synthesis of filled carbon nanoparticles. Chem Phys Lett 293:53–58

    Article  Google Scholar 

  177. Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev 35:637–659

    Article  Google Scholar 

  178. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  Google Scholar 

  179. Shankar SS, Ahmad A, Pasricha R et al (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  Google Scholar 

  180. Yang X, Li Q, Wang H et al (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanoparticle Res 12:1589–1598

    Article  Google Scholar 

  181. Huang J, Lin L, Li Q et al (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res 47:6081–6090

    Article  Google Scholar 

  182. Sharma B, Purkayastha DD, Hazra S et al (2014) Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater Lett 116:94–97

    Article  Google Scholar 

  183. Kumar B, Smita K, Cumbal L (2016) Biofabrication of nanogold from the flower extracts of Lantana camara. IET Nanobiotechnol 10:154–157

    Article  Google Scholar 

  184. Paul B, Bhuyan B, Purkayastha DD et al (2015) Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater Lett 148:37–40

    Article  Google Scholar 

Download references

Funding information

This publication is part of the project number 264086, "Nanoactivities", funded by the Norwegian Research Council, SkatteFUNN scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Manzetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzetti, S., Enrichi, F. State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics. Adv. Manuf. 5, 105–119 (2017). https://doi.org/10.1007/s40436-017-0172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-017-0172-y

Keywords

Navigation