Skip to main content

Advertisement

Log in

Adolescent Neurodevelopment Within the Context of Impulsivity and Substance Use

  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of the present review is to provide an update on recent studies examining adolescent neurodevelopment in the context of impulsivity and substance use. We provide a review of the neurodevelopmental changes in brain structure and function related to impulsivity, substance use, and their intersection.

Recent Findings

When examining brain structure, smaller gray matter volume coupled with lower white matter integrity is associated with greater impulsivity across three components: trait impulsivity, choice impulsivity, and response inhibition. Altered functional connectivity in networks including the inhibitory control network and reward processing network confers risk for greater impulsivity and substance use.

Summary

Across brain structure and function, there is evidence to suggest that overlapping areas involved in the rise in impulsivity during adolescence contribute to early substance use initiation and escalation. These overlapping neurodevelopmental correlates have promising implications for prevention and early intervention efforts for adolescent substance use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Inchley J, Currie D, Budisavljevic S, Torsheim T, Jåstad A, Cosma A, et al. Spotlight on adolescent health and well-being. Findings. 2017;2018:1–2.

    Google Scholar 

  2. Gilmore JH, Knickmeyer RC, Gao W. Imaging structural and functional brain development in early childhood. Nat Rev Neurosci. 2018;19(3):123–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spear LP. Adolescent neurodevelopment. J Adolesc Health. 2013;52(2 Suppl 2):S7-13.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: receptor expression and behavioral consequences. Pharmacol Ther. 2020;206:107431.

    Article  CAS  PubMed  Google Scholar 

  5. López-Vicente M, Agcaoglu O, Pérez-Crespo L, Estévez-López F, Heredia-Genestar JM, Mulder RH, et al. Developmental changes in dynamic functional connectivity from childhood into adolescence. Front Syst Neurosci. 2021;15:724805.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Váša F, Romero-Garcia R, Kitzbichler MG, Seidlitz J, Whitaker KJ, Vaghi MM, et al. Conservative and disruptive modes of adolescent change in human brain functional connectivity. Proc Natl Acad Sci U S A. 2020;117(6):3248–53.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004;101(21):8174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mills KL, Goddings AL, Herting MM, Meuwese R, Blakemore SJ, Crone EA, et al. Structural brain development between childhood and adulthood: convergence across four longitudinal samples. Neuroimage. 2016;141:273–81.

    Article  PubMed  Google Scholar 

  9. Tamnes CK, Herting MM, Goddings AL, Meuwese R, Blakemore SJ, Dahl RE, et al. Development of the cerebral cortex across adolescence: a multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J Neurosci. 2017;37(12):3402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tamnes CK, Ostby Y, Fjell AM, Westlye LT, Due-Tønnessen P, Walhovd KB. Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex. 2010;20(3):534–48.

    Article  PubMed  Google Scholar 

  11. Wierenga LM, Langen M, Oranje B, Durston S. Unique developmental trajectories of cortical thickness and surface area. Neuroimage. 2014;87:120–6.

    Article  PubMed  Google Scholar 

  12. Lebel C, Treit S, Beaulieu C. A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR Biomed. 2019;32(4):e3778.

    Article  PubMed  Google Scholar 

  13. Paus T. Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn. 2010;72(1):26–35.

    Article  PubMed  Google Scholar 

  14. Güroğlu B. Adolescent brain in a social world: unravelling the positive power of peers from a neurobehavioral perspective. Eur J Dev Psychol. 2021;18(4):471–93.

    Article  Google Scholar 

  15. Morningstar M, Grannis C, Mattson WI, Nelson EE. Associations between adolescents’ social re-orientation toward peers over caregivers and neural response to teenage faces. Front Behav Neurosci. 2019;13:108.

    Article  PubMed  PubMed Central  Google Scholar 

  16. American Psychiatric Association D, Association AP. Diagnostic and statistical manual of mental disorders: DSM-5: American Psychiatric Association Washington, DC; 2013.

  17. Whiteside SP, Lynam DR. The five factor model and impulsivity: using a structural model of personality to understand impulsivity. Personality Individ Differ. 2001;30(4):669–89.

    Article  Google Scholar 

  18. Cyders MA. Impulsivity and the sexes: measurement and structural invariance of the UPPS-P Impulsive Behavior Scale. Assessment. 2013;20(1):86–97.

    Article  PubMed  Google Scholar 

  19. Hamilton KR, Mitchell MR, Wing VC, Balodis IM, Bickel WK, Fillmore M, et al. Choice impulsivity: definitions, measurement issues, and clinical implications. Personal Disord. 2015;6(2):182–98.

    Article  PubMed  PubMed Central  Google Scholar 

  20. •• McQuaid GA, Darcey VL, Patterson AE, Rose EJ, VanMeter AS, Fishbein DH. Baseline brain and behavioral factors distinguish adolescent substance initiators and non-initiators at follow-up. Front Psychiatry. 2022;13:1025259. Examination of potential biomarkers for early substance use initiation among adolescents.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol. 2013;108:44–79.

    Article  PubMed  Google Scholar 

  22. MacKillop J, Weafer J, Gray JC, Oshri A, Palmer A, de Wit H. The latent structure of impulsivity: impulsive choice, impulsive action, and impulsive personality traits. Psychopharmacology (Berl). 2016;233(18):3361–70.

    Article  CAS  PubMed  Google Scholar 

  23. •• Kozak K, Lucatch AM, Lowe DJE, Balodis IM, MacKillop J, George TP. The neurobiology of impulsivity and substance use disorders: implications for treatment. Ann N Y Acad Sci. 2019;1451(1):71–91. This article provides an overview of neurobiological factors related to impulsivity and substance use, with an emphasis for implications for treatment among adults.

    Article  PubMed  Google Scholar 

  24. Koning E, Vorstman J, McIntyre RS, Brietzke E. Characterizing eating behavioral phenotypes in mood disorders: a narrative review. Psychol Med. 2022;52(14):2885–98.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Veloso AS, Vicente SG, Filipe MG. Assessment of ‘cool’ and ‘hot’ executive skills in children with ADHD: the role of performance measures and behavioral ratings. Eur J Investig Health Psychol Educ. 2022;12(11):1657–72.

    PubMed  PubMed Central  Google Scholar 

  26. Villa FM, Crippa A, Rosi E, Nobile M, Brambilla P, Delvecchio G. ADHD and eating disorders in childhood and adolescence: an updated minireview. J Affect Disord. 2023;321:265–71.

    Article  CAS  PubMed  Google Scholar 

  27. Lees B, Garcia AM, Debenham J, Kirkland AE, Bryant BE, Mewton L, et al. Promising vulnerability markers of substance use and misuse: a review of human neurobehavioral studies. Neuropharmacology. 2021;187:108500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stevens L, Goudriaan AE, Verdejo-Garcia A, Dom G, Roeyers H, Vanderplasschen W. Impulsive choice predicts short-term relapse in substance-dependent individuals attending an in-patient detoxification programme. Psychol Med. 2015;45(10):2083–93.

    Article  CAS  PubMed  Google Scholar 

  29. Ivanov I, Parvaz MA, Velthorst E, Shaik RB, Sandin S, Gan G, et al. Substance use initiation, particularly alcohol, in drug-naive adolescents: possible predictors and consequences from a large cohort naturalistic study. J Am Acad Child Adolesc Psychiatry. 2021;60(5):623–36.

    Article  PubMed  Google Scholar 

  30. Norman AL, Pulido C, Squeglia LM, Spadoni AD, Paulus MP, Tapert SF. Neural activation during inhibition predicts initiation of substance use in adolescence. Drug Alcohol Depend. 2011;119(3):216–23.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chuang CI, Sussman S, Stone MD, Pang RD, Chou CP, Leventhal AM, et al. Impulsivity and history of behavioral addictions are associated with drug use in adolescents. Addict Behav. 2017;74:41–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nawi AM, Ismail R, Ibrahim F, Hassan MR, Manaf MRA, Amit N, et al. Risk and protective factors of drug abuse among adolescents: a systematic review. BMC Public Health. 2021;21(1):2088.

    Article  PubMed  PubMed Central  Google Scholar 

  33. • Brooks SJ, Lochner C, Shoptaw S, Stein DJ. Using the research domain criteria (RDoC) to conceptualize impulsivity and compulsivity in relation to addiction. Prog Brain Res. 2017;235:177–218. Explanation of how the RDoC approach can be applied to impulsivity and compulsivity and implications for substance use disorders.

    Article  PubMed  Google Scholar 

  34. Fandakova Y, Hartley CA. Mechanisms of learning and plasticity in childhood and adolescence. Dev Cogn Neurosci. 2020;42:100764.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shulman EP, Smith AR, Silva K, Icenogle G, Duell N, Chein J, et al. The Dual Systems Model: review, reappraisal, and reaffirmation. Dev Cogn Neurosci. 2016;17:103–17.

    Article  PubMed  Google Scholar 

  36. Adisetiyo V, Gray KM. Neuroimaging the neural correlates of increased risk for substance use disorders in attention-deficit/hyperactivity disorder-a systematic review. Am J Addict. 2017;26(2):99–111.

    Article  PubMed  Google Scholar 

  37. Fineberg NA, Chamberlain SR, Goudriaan AE, Stein DJ, Vanderschuren LJ, Gillan CM, et al. New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr. 2014;19(1):69–89.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Leshem R. Brain development, impulsivity, risky decision making, and cognitive control: integrating cognitive and socioemotional processes during adolescence-an introduction to the special issue. Dev Neuropsychol. 2016;41(1–2):1–5.

    Article  PubMed  Google Scholar 

  39. Crews FT, Boettiger CA. Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav. 2009;93(3):237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dalley JW, Robbins TW. Fractionating impulsivity: neuropsychiatric implications. Nat Rev Neurosci. 2017;18(3):158–71.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Q, Chen C, Cai Y, Li S, Zhao X, Zheng L, et al. Dissociated neural substrates underlying impulsive choice and impulsive action. Neuroimage. 2016;134:540–9.

    Article  PubMed  Google Scholar 

  42. Whelan R, Conrod PJ, Poline JB, Lourdusamy A, Banaschewski T, Barker GJ, et al. Adolescent impulsivity phenotypes characterized by distinct brain networks. Nat Neurosci. 2012;15(6):920–5.

    Article  CAS  PubMed  Google Scholar 

  43. Edde M, Leroux G, Altena E, Chanraud S. Functional brain connectivity changes across the human life span: from fetal development to old age. J Neurosci Res. 2021;99(1):236–62.

    Article  CAS  PubMed  Google Scholar 

  44. Saad JF, Griffiths KR, Kohn MR, Braund TA, Clarke S, Williams LM, et al. Intrinsic functional connectivity in the default mode network differentiates the combined and inattentive attention deficit hyperactivity disorder types. Front Hum Neurosci. 2022;16:859538.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stevens MC, Kiehl KA, Pearlson GD, Calhoun VD. Functional neural networks underlying response inhibition in adolescents and adults. Behav Brain Res. 2007;181(1):12–22.

    Article  PubMed  PubMed Central  Google Scholar 

  46. •• Chen Y, Ide JS, Li CS, Chaudhary S, Le TM, Wang W, et al. Gray matter volumetric correlates of dimensional impulsivity traits in children: sex differences and heritability. Hum Brain Mapp. 2022;43(8):2634–52. An important study examining GM correlates of trait impulsivity with the UPPS-P.

    Article  PubMed  PubMed Central  Google Scholar 

  47. •• Owens MM, Hyatt CS, Gray JC, Miller JD, Lynam DR, Hahn S, et al. Neuroanatomical correlates of impulsive traits in children aged 9 to 10. J Abnorm Psychol. 2020;129(8):831–44. Examination of GM and WM correlates of trait impulsivity with the UPPS-P in children ages 9–10.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lam BY, Huang Y, Gao Y. Gray matter asymmetry in the orbitofrontal cortex in relation to psychopathic traits in adolescents. J Psychiatr Res. 2021;132:84–96.

    Article  PubMed  Google Scholar 

  49. Merz EC, He X, Noble KG. Anxiety, depression, impulsivity, and brain structure in children and adolescents. Neuroimage Clin. 2018;20:243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ikuta T, Del Arco A, Karlsgodt KH. White matter integrity in the fronto-striatal accumbofrontal tract predicts impulsivity. Brain Imaging Behav. 2018;12(5):1524–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zheng D, Chen J, Wang X, Zhou Y. Genetic contribution to the phenotypic correlation between trait impulsivity and resting-state functional connectivity of the amygdala and its subregions. Neuroimage. 2019;201:115997.

    Article  PubMed  Google Scholar 

  52. Ágrez K, Bunford N. Gray’s impulsivity is differentially associated with amygdala-insula functional connectivity in adolescents, depending on ADHD risk status. BJPsych Open. 2022;8(S1):S79–80.

    Article  PubMed Central  Google Scholar 

  53. Sharkey RJ, Bourque J, Larcher K, Mišić B, Zhang Y, Altınkaya A, et al. Mesolimbic connectivity signatures of impulsivity and BMI in early adolescence. Appetite. 2019;132:25–36.

    Article  PubMed  Google Scholar 

  54. Pehlivanova M, Wolf DH, Sotiras A, Kaczkurkin AN, Moore TM, Ciric R, et al. Diminished cortical thickness is associated with impulsive choice in adolescence. J Neurosci. 2018;38(10):2471–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lapidaire W, Urrila AS, Artiges E, Miranda R, Vulser H, Bézivin-Frere P, et al. Irregular sleep habits, regional grey matter volumes, and psychological functioning in adolescents. PLoS One. 2021;16(2):e0243720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang S, Kong F, Zhou M, Chen T, Yang X, Chen G, et al. Brain structure linking delay discounting and academic performance. Hum Brain Mapp. 2017;38(8):3917–26.

    Article  PubMed  PubMed Central  Google Scholar 

  57. •• Shen C, Luo Q, Jia T, Zhao Q, Desrivières S, Quinlan EB, et al. Neural correlates of the dual-pathway model for ADHD in adolescents. Am J Psychiatry. 2020;177(9):844–54. In a sample of youth with ADHD, an examination of GM correlates related to choice impulsivity.

    Article  PubMed  Google Scholar 

  58. Ho BC, Koeppel JA, Barry AB. Cerebral white matter correlates of delay discounting in adolescents. Behav Brain Res. 2016;305:108–14.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Achterberg M, Peper JS, van Duijvenvoorde AC, Mandl RC, Crone EA. Frontostriatal white matter integrity predicts development of delay of gratification: a longitudinal study. J Neurosci. 2016;36(6):1954–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nord CL, Kim SG, Callesen MB, Kvamme TL, Jensen M, Pedersen MU, et al. The myeloarchitecture of impulsivity: premature responding in youth is associated with decreased myelination of ventral putamen. Neuropsychopharmacology. 2019;44(7):1216–23.

    Article  PubMed  PubMed Central  Google Scholar 

  61. van de Groep S, Sweijen SW, de Water E, Crone EA. Temporal discounting for self and friends in adolescence: a fMRI study. Dev Cogn Neurosci. 2023;60:101204.

    Article  Google Scholar 

  62. Crone EA, Fuligni AJ. Self and others in adolescence. Annu Rev Psychol. 2020;71:447–69.

    Article  PubMed  Google Scholar 

  63. van Hoorn J, Shablack H, Lindquist KA, Telzer EH. Incorporating the social context into neurocognitive models of adolescent decision-making: a neuroimaging meta-analysis. Neurosci Biobehav Rev. 2019;101:129–42.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Van Overwalle F, Baetens K. Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage. 2009;48(3):564–84.

    Article  PubMed  Google Scholar 

  65. Wang S, Zhou M, Chen T, Yang X, Chen G, Gong Q. Delay discounting is associated with the fractional amplitude of low-frequency fluctuations and resting-state functional connectivity in late adolescence. Sci Rep. 2017;7(1):10276.

    Article  PubMed  PubMed Central  Google Scholar 

  66. •• Hamilton KR, Smith JF, Gonçalves SF, Nketia JA, Tasheuras ON, Yoon M, et al. Striatal bases of temporal discounting in early adolescents. Neuropsychologia. 2020;144:107492. Highlights the important role of the striatum in choice impulsivity among adolescents.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kim B, Im HI. The role of the dorsal striatum in choice impulsivity. Ann N Y Acad Sci. 2019;1451(1):92–111.

    Article  PubMed  Google Scholar 

  68. Gray JA. Précis of The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system. Behav Brain Sci. 1982;5(3):469–84.

    Article  Google Scholar 

  69. Eriksson LJ, Jansson B, Lisspers J, Sundin Ö. The interactive effect of the Behavioral Inhibition System (BIS) and response inhibition on accuracy in a modified stop-signal task. Personality Individ Differ. 2016;97:198–202.

    Article  Google Scholar 

  70. Ide JS, Li HT, Chen Y, Le TM, Li CSP, Zhornitsky S, et al. Gray matter volumetric correlates of behavioral activation and inhibition system traits in children: an exploratory voxel-based morphometry study of the ABCD project data. Neuroimage. 2020;220:117085.

    Article  PubMed  Google Scholar 

  71. •• Goddings AL, Roalf D, Lebel C, Tamnes CK. Development of white matter microstructure and executive functions during childhood and adolescence: a review of diffusion MRI studies. Dev Cogn Neurosci. 2021;51:101008. Detailed review of WM microstructure and response inhibition throughout childhood and adolescence.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Constantinidis C, Luna B. Neural substrates of inhibitory control maturation in adolescence. Trends Neurosci. 2019;42(9):604–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. • Weiss H, Luciana M. Neurobehavioral maturation of motor response inhibition in adolescence - a narrative review. Neurosci Biobehav Rev. 2022;137:104646. Detailed overview of the neural regions involved in the development of response inhibition throughout adolescence

    Article  PubMed  Google Scholar 

  74. Raud L, Westerhausen R, Dooley N, Huster RJ. Differences in unity: the go/no-go and stop signal tasks rely on different mechanisms. Neuroimage. 2020;210:116582.

    Article  PubMed  Google Scholar 

  75. Kaiser A, Holz NE, Banaschewski T, Baumeister S, Bokde ALW, Desrivières S, et al. A developmental perspective on facets of impulsivity and brain activity correlates from adolescence to adulthood. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7(11):1103–15.

    PubMed  PubMed Central  Google Scholar 

  76. Rømer Thomsen K, Callesen MB, Hesse M, Kvamme TL, Pedersen MM, Pedersen MU, et al. Impulsivity traits and addiction-related behaviors in youth. J Behav Addict. 2018;7(2):317–30.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hamilton KR, Felton JW, Gonçalves SF, Tasheuras ON, Yoon M, Lejuez CW. Trait impulsivity during early adolescence predicts steepness of alcohol use escalation across adolescence. Addict Behav. 2019;98:106017.

    Article  PubMed  Google Scholar 

  78. Fröhner JH, Ripke S, Jurk S, Li SC, Banaschewski T, Bokde ALW, et al. Associations of delay discounting and drinking trajectories from ages 14 to 22. Alcohol Clin Exp Res. 2022;46(4):667–81.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mackey S, Chaarani B, Duffy C, Garavan H, Consortium I. 879. Temporal discounting at age 14 predicts cannabis use at ages 16 and 18. Biol Psychiatry. 2017;81(10):S355.

    Article  Google Scholar 

  80. Bernhardt N, Nebe S, Pooseh S, Sebold M, Sommer C, Birkenstock J, et al. Impulsive decision making in young adult social drinkers and detoxified alcohol-dependent patients: a cross-sectional and longitudinal study. Alcohol Clin Exp Res. 2017;41(10):1794–807.

    Article  CAS  PubMed  Google Scholar 

  81. Fernández-Artamendi S, Martínez-Loredo V, Grande-Gosende A, Simpson IC, Fernández-Hermida JR. What predicts what? Self-reported and behavioral impulsivity and high-risk patterns of alcohol use in Spanish early adolescents: a 2-year longitudinal study. Alcohol Clin Exp Res. 2018;42(10):2022–32.

    Article  PubMed  Google Scholar 

  82. Heitzeg MM, Nigg JT, Hardee JE, Soules M, Steinberg D, Zubieta JK, et al. Left middle frontal gyrus response to inhibitory errors in children prospectively predicts early problem substance use. Drug Alcohol Depend. 2014;141:51–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wetherill RR, Squeglia LM, Yang TT, Tapert SF. A longitudinal examination of adolescent response inhibition: neural differences before and after the initiation of heavy drinking. Psychopharmacology. 2013;230(4):663–71.

    Article  CAS  PubMed  Google Scholar 

  84. Rømer Thomsen K, BlomOsterland T, Hesse M, Feldstein Ewing SW. The intersection between response inhibition and substance use among adolescents. Addict Behav. 2018;78:228–30.

    Article  PubMed  Google Scholar 

  85. Lees B, Debenham J, Squeglia LM. Alcohol and cannabis use and the developing brain. Alcohol Res. 2021;41(1):11.

    PubMed  PubMed Central  Google Scholar 

  86. Pfefferbaum A, Kwon D, Brumback T, Thompson WK, Cummins K, Tapert SF, et al. Altered brain developmental trajectories in adolescents after initiating drinking. Am J Psychiatry. 2018;175(4):370–80.

    Article  PubMed  Google Scholar 

  87. •• Baranger DAA, Demers CH, Elsayed NM, Knodt AR, Radtke SR, Desmarais A, et al. Convergent evidence for predispositional effects of brain gray matter volume on alcohol consumption. Biol Psychiatry. 2020;87(7):645–55. Detailed overview across adolescents and adults of alterations in GM that predate alcohol use.

    Article  CAS  PubMed  Google Scholar 

  88. Jones DT, Graff-Radford J. Executive dysfunction and the prefrontal cortex. Continuum (Minneap Minn). 2021;27(6):1586–601.

    PubMed  Google Scholar 

  89. O’Halloran L, Nymberg C, Jollans L, Garavan H, Whelan R. The potential of neuroimaging for identifying predictors of adolescent alcohol use initiation and misuse. Addiction. 2017;112(4):719–26.

    Article  PubMed  Google Scholar 

  90. Robert GH, Luo Q, Yu T, Chu C, Ing A, Jia T, et al. Association of gray matter and personality development with increased drunkenness frequency during adolescence. JAMA Psychiat. 2020;77(4):409–19.

    Article  Google Scholar 

  91. Squeglia LM, Gray KM. Alcohol and drug use and the developing brain. Curr Psychiatry Rep. 2016;18(5):46.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wade NE, Bagot KS, Cota CI, Fotros A, Squeglia LM, Meredith LR, et al. Orbitofrontal cortex volume prospectively predicts cannabis and other substance use onset in adolescents. J Psychopharmacol. 2019;33(9):1124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Conti AA, Baldacchino AM. Chronic tobacco smoking, impaired reward-based decision-making, and role of insular cortex: a comparison between early-onset smokers and late-onset smokers. Front Psychiatry. 2022;13:939707.

    Article  PubMed  PubMed Central  Google Scholar 

  94. •• Weidacker K, Kim SG, Buhl-Callesen M, Jensen M, Pedersen MU, Thomsen KR, et al. The prediction of resilience to alcohol consumption in youths: insular and subcallosal cingulate myeloarchitecture. Psychol Med. 2022;52(11):2032–42. An interesting examination of how structural neuroimaging factors can be protective for early alcohol use.

    Article  PubMed  Google Scholar 

  95. Rane RP, de Man EF, Kim J, Görgen K, Tschorn M, Rapp MA, et al. Structural differences in adolescent brains can predict alcohol misuse. Elife. 2022;11.

  96. Bray S, Krongold M, Cooper C, Lebel C. Synergistic effects of age on patterns of white and gray matter volume across childhood and adolescence. eNeuro. 2015;2(4).

  97. Hamidullah S, Thorpe HHA, Frie JA, McCurdy RD, Khokhar JY. Adolescent substance use and the brain: behavioral, cognitive and neuroimaging correlates. Front Hum Neurosci. 2020;14:298.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hubbard NA, Miller KB, Aloi J, Bajaj S, Wakabayashi KT, Blair RJR. Evaluating instrumental learning and striatal-cortical functional connectivity in adolescent alcohol and cannabis use. Addict Biol. 2023;28(1):e13258.

    Article  PubMed  Google Scholar 

  99. Keeley RJ, Prillaman ME, Scarlata M, Vrana A, Tsai PJ, Gomez JL, et al. Adolescent nicotine administration increases nicotinic acetylcholine receptor binding and functional connectivity in specific cortico-striatal-thalamic circuits. Brain Commun. 2022;4(6):fcac291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ramage AE, Lin A-L, Olvera RL, Fox PT, Williamson DE. Resting-state regional cerebral blood flow during adolescence: associations with initiation of substance use and prediction of future use disorders. Drug Alcohol Depend. 2015;149:40–8.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tervo-Clemmens B, Quach A, Calabro FJ, Foran W, Luna B. Meta-analysis and review of functional neuroimaging differences underlying adolescent vulnerability to substance use. Neuroimage. 2020;209:116476.

    Article  PubMed  Google Scholar 

  102. •• Antón-Toro LF, Bruña R, Suárez-Méndez I, Correas Á, García-Moreno LM, Maestú F. Abnormal organization of inhibitory control functional networks in future binge drinkers. Drug Alcohol Depend. 2021;218:108401. An interesting article discussing how alterations in the inhibitory control network confer risk for future alcohol use among adolescents.

    Article  PubMed  Google Scholar 

  103. Crane NA, Gorka SM, Phan KL, Childs E. Amygdala-orbitofrontal functional connectivity mediates the relationship between sensation seeking and alcohol use among binge-drinking adults. Drug Alcohol Depend. 2018;192:208–14.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hu Y, Salmeron BJ, Gu H, Stein EA, Yang Y. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiat. 2015;72(6):584–92.

    Article  Google Scholar 

  105. Peters KZ, Naneix F. The role of dopamine and endocannabinoid systems in prefrontal cortex development: adolescence as a critical period. Front Neural Circuits. 2022;16:939235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cope LM, Martz ME, Hardee JE, Zucker RA, Heitzeg MM. Reward activation in childhood predicts adolescent substance use initiation in a high-risk sample. Drug Alcohol Depend. 2019;194:318–25.

    Article  PubMed  Google Scholar 

  107. Antón-Toro LF, Bruña R, Del Cerro-León A, Shpakivska D, Mateos-Gordo P, Porras-Truque C, et al. Electrophysiological resting-state hyperconnectivity and poorer behavioural regulation as predisposing profiles of adolescent binge drinking. Addict Biol. 2022;27(4):e13199.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Edalati H, Conrod PJ. A review of personality-targeted interventions for prevention of substance misuse and related harm in community samples of adolescents. Front Psychiatry. 2018;9:770.

    Article  PubMed  Google Scholar 

  109. Jordan CJ, Andersen SL. Sensitive periods of substance abuse: early risk for the transition to dependence. Dev Cogn Neurosci. 2017;25:29–44.

    Article  PubMed  Google Scholar 

  110. Mewton L, Hodge A, Gates N, Visontay R, Lees B, Teesson M. A randomised double-blind trial of cognitive training for the prevention of psychopathology in at-risk youth. Behav Res Ther. 2020;132:103672.

    Article  PubMed  Google Scholar 

  111. Verdejo-Garcia A, Rezapour T, Giddens E, KhojastehZonoozi A, Rafei P, Berry J, et al. Cognitive training and remediation interventions for substance use disorders: a Delphi consensus study. Addiction. 2023;118(5):935–51.

    Article  PubMed  Google Scholar 

  112. Fadus MC, Squeglia LM, Valadez EA, Tomko RL, Bryant BE, Gray KM. Adolescent substance use disorder treatment: an update on evidence-based strategies. Curr Psychiatry Rep. 2019;21(10):96.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gibson BC, Claus ED, Sanguinetti J, Witkiewitz K, Clark VP. A review of functional brain differences predicting relapse in substance use disorder: actionable targets for new methods of noninvasive brain stimulation. Neurosci Biobehav Rev. 2022;141:104821.

    Article  CAS  PubMed  Google Scholar 

  114. Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul. 2015;8(1):76–87.

    Article  PubMed  Google Scholar 

  115. King KM, Patock-Peckham JA, Dager AD, Thimm K, Gates JR. On the mismeasurement of impulsivity: trait, behavioral, and neural models in alcohol research among adolescents and young adults. Curr Addict Rep. 2014;1:19–32.

    Article  Google Scholar 

  116. Pang EW. Practical aspects of running developmental studies in the MEG. Brain Topogr. 2011;24(3–4):253–60.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13–36.

    Article  PubMed  Google Scholar 

Download references

Funding

RG was supported by a training grant from the National Institute on Alcohol Abuse and Alcoholism (T32 AA007474-35). LRM was also supported by the National Institute on Alcohol Abuse and Alcoholism as a pre-doctoral trainee (F31 AA029295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ReJoyce Green.

Ethics declarations

Conflict of Interest

LRM reported consulting for Friends Research Institute Inc. RG, LRM, and LMS reported receiving grant support from the National Institute on Alcohol Abuse and Alcoholism (NIAAA). All other authors declare that they have no conflict of interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, R., Meredith, L.R., Mewton, L. et al. Adolescent Neurodevelopment Within the Context of Impulsivity and Substance Use. Curr Addict Rep 10, 166–177 (2023). https://doi.org/10.1007/s40429-023-00485-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-023-00485-4

Keywords

Navigation