Skip to main content

Advertisement

Log in

Practical Aspects of Running Developmental Studies in the MEG

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Developmental neuroimaging studies offer a unique opportunity to gain insight into the underpinnings of various cognitive functions by examining age-related changes in brain structure and function. There is an increasing body of neuroimaging literature discussing issues related to testing children in developmental studies (Crone et al. Human Brain Mapping 31:835–837, 2010). These deal with fMRI developmental studies and discuss methods (Luna et al. Human Brain Mapp 31:863–871, 2010), data interpretation (Poldrack Human Brain Mapp 31:872–878, 2010), and theoretical approaches (Karmiloff-Smith Human Brain Mapp 31:934–941, 2010). There has not yet been an equivalent discussion for MEG developmental studies. This paper will address issues specific to data acquisition, analysis, and interpretation for MEG developmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banaschewski T, Brandeis D (2007) Annotation: what electrical brain activity tells us about brain function that other techniques cannot tell us—a child psychiatric perspective. J Child Psychol Psychiatry 48(5):415–435

    Article  PubMed  Google Scholar 

  • Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51:477–484

    PubMed  CAS  Google Scholar 

  • Burack JA, Iarocci G, Flanagan TD, Bowler DM (2004) On mosaics and melting pots: conceptual considerations of comparison and matching strategies. J Autism Dev Disord 34:65–73

    Article  PubMed  Google Scholar 

  • Byars AW, Holland SK, Strawsburg RH, Bommer W, Dunn S, Schmithorst VJ, Plante E (2002) Practical aspects of conducting large-scale functional magnetic resonance imaging studies in children. J Child Neurol 17:885–889

    Article  PubMed  Google Scholar 

  • Caviness VS, Kennedy DN Jr, Richelme C, Rademacher J, Filipek PA (1996) The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 6:726–736

    Article  PubMed  Google Scholar 

  • Chau W, McIntosh AR, Robinson SE, Schulz M, Pantev C (2004) Improving permutation test power for group analysis of spatially filtered MEG data. NeuroImage 23:983–996

    Article  PubMed  Google Scholar 

  • Cheyne D, Bostan AC, Gaetz W, Pang EW (2007) Event-related beamforming: a robust method for presurgical functional mapping using MEG. Clin Neurophysiol 118:1691–1704

    Article  PubMed  Google Scholar 

  • Crone EA, Poldrack RA, Durston S (2010) Challenges and methods in developmental neuroimaging. Hum Brain Mapp 31:835–837

    Article  PubMed  Google Scholar 

  • De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, Masalehdan A, Noll J, Boring AM (2001) Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 11:552–557

    Article  PubMed  Google Scholar 

  • Dustman RE, Snyder EW (1981) Life-span changes in visually evoked potentials at central scalp. Neurobiol Aging 2:303–308

    Article  PubMed  CAS  Google Scholar 

  • Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54:313–327

    Article  PubMed  Google Scholar 

  • Gaetz W, Otsubo H, Pang EW (2008) Magnetoencephalography for clinical paediatrics: the effect of head positioning on measurement of somatosensory evoked fields. Clin Neurophysiol 119:1923–1933

    Article  PubMed  CAS  Google Scholar 

  • Gaillard WD, Grandin CB, Xu B (2001) Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis and interpretation. NeuroImage 13:239–249

    Article  PubMed  CAS  Google Scholar 

  • Gesell A, Ames LB (1947) The development of handedness. J Genet Psychol 70:155–175

    PubMed  CAS  Google Scholar 

  • Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–560

    Article  PubMed  CAS  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987) Development of cortical circuitry and cognitive function. Child Dev 58:601–602

    Article  PubMed  CAS  Google Scholar 

  • Handy TC (ed) (2009) Brain signal analysis—advances in neuroelectric and neuromagnetic methods. MIT Press, Cambridge

    Google Scholar 

  • Hannula DF, Althoff RR, Warren DE, Riggs L, Cohen NJ, Ryan JD (2010) Worth a glance: using eye movements to investigate the cognitive neuroscience of memory. Front Hum Neurosci 4:166. doi:10.3389/fnhum.2010.00166

    Article  PubMed  Google Scholar 

  • Hari R, Parkkonen L, Nangini C (2010) The brain in time: insights from neuromagnetic recordings. Ann N Y Acad Sci 1191:89–109

    Article  PubMed  Google Scholar 

  • Hinton VJ (2002) Ethics of neuroimaging in pediatric development. Brain Cogn 50:455–468

    Article  PubMed  Google Scholar 

  • Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205

    Article  PubMed  CAS  Google Scholar 

  • Jarrold C, Brock J (2004) To match or not to match? Methodological issues in autism-related research. J Autism Dev Disord 34:81–86

    Article  PubMed  Google Scholar 

  • Johnson BW, Crain S, Thornton R, Tesan G, Reid M (2010) Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array. Clin Neurophysiol 121:340–349

    Article  PubMed  Google Scholar 

  • Johnstone SJ, Barry RJ, Anderson JW, Coyle SF (1996) Age-related changes in child and adolescent event-related potential component morphology, amplitude and latency to standard and target stimuli in an auditory oddball task. Int J Psychophysiol 24:223–238

    Article  PubMed  CAS  Google Scholar 

  • Karmiloff-Smith A (2010) Neuroimaging of the developing brain: Taking “developing” seriously. Hum Brain Mapp 31:934–941

    Article  PubMed  Google Scholar 

  • Kotsoni E, Byrd D, Casey BJ (2006) Special considerations for functional magnetic resonance imaging of pediatric populations. J Magn Reson Imaging 23:877–886

    Article  PubMed  Google Scholar 

  • Kreidstein ML, Giguere D, Freiberg A (1997) MRI interaction with tattoo pigments: case report, pathophysiology and management. Plast Reconstr Surg 99:1717–1720

    Article  PubMed  CAS  Google Scholar 

  • Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729

    Article  PubMed  Google Scholar 

  • Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, Blumenthal JD, Lerch J, Zijdenbos AP, Evans AC, Thompson PM, Giedd JN (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage 36:1065–1073

    Article  PubMed  Google Scholar 

  • Luna B, Velanova K, Geier CF (2010) Methodological approaches in developmental neuroimaging studies. Hum Brain Mapp 31:863–871

    Article  PubMed  Google Scholar 

  • Marinkovic K, Cox B, Reid K, Halgren E (2004) Head position in the MEG helmet affects the sensitivity to anterior sources. Neurol Clin Neurophysiol 30:1–6

    Google Scholar 

  • McIntosh AR, Kovacevic N, Itier RJ (2008) Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol 4(7):e1000106. doi:10.1371/journal.pcbi.1000106

    Article  PubMed  Google Scholar 

  • Misic B, Mills T, Taylor MJ, McIntosh AR (2010) Brain noise is task dependent and region specific. J Neurophysiol 104:2667–2676

    Article  PubMed  Google Scholar 

  • Moore JK, Guan Y-L (2001) Cytoarchitectural and axonal maturation in human auditory cortex. J Assoc Res Otolaryngol 2:297–311

    Article  PubMed  CAS  Google Scholar 

  • Pang EW, Gaetz W, Otsubo H, Chuang S, Cheyne D (2003) Localization of auditory N1 in children using MEG: source modeling issues. Int J Psychophysiol 51:27–35

    Article  PubMed  Google Scholar 

  • Picton TW, Taylor MJ (2007) Electrophysiological evaluation of human brain development. Dev Neuropsychol 31:249–278

    Article  PubMed  Google Scholar 

  • Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R Jr, Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ (2000a) Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37:127–152

    Article  PubMed  CAS  Google Scholar 

  • Picton TW, van Roon P, Armilio ML, Berg P, Ille N, Scherg M (2000b) The correction of ocular artifacts: a topographic perspective. Clin Neurophysiol 111:53–65

    Article  PubMed  CAS  Google Scholar 

  • Poldrack RA (2010) Interpreting developmental changes in neuroimaging signals. Hum Brain Mapp 31:872–878

    Article  PubMed  Google Scholar 

  • Quraan MA, Cheyne D (2010) Reconstruction of correlated brain activity with adaptive spatial filters in MEG. NeuroImage 49:2387–2400

    Article  PubMed  Google Scholar 

  • Rivkin MJ (2000) Developmental neuroimaging of children using magnetic resonance techniques. Ment Retard Dev Disabil Res Rev 6:68–80

    Article  PubMed  CAS  Google Scholar 

  • Segalowitz SJ, Davies PL (2004) Charting the maturation of the frontal lobe: an electrophysiological strategy. Brain Cogn 55:116–133

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Crosher GA (1985) Mascara—an unsuspected cause of magnetic resonance imaging artefact. Magn Reson Imaging 3:287–289

    Article  PubMed  CAS  Google Scholar 

  • Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 2:859–861

    Article  PubMed  CAS  Google Scholar 

  • Sowell ER, Thompson PM, Rex DE, Kornsand DS, Jernigan TL, Toga AW (2002) Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices. Cortex 12:17–26

    Article  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AS (2003) Mapping cortical change across the human lifespan. Nat Neurosci 6:309–315

    Article  PubMed  CAS  Google Scholar 

  • Stefan H (2009) Magnetic source imaging. Revue Neurologique (Paris) 165:742–745

    Article  CAS  Google Scholar 

  • Stufflebeam SM, Tanaka N, Ahlfors SP (2009) Clinical applications of magnetoencephalography. Hum Brain Mapp 30:1813–1823

    Article  PubMed  Google Scholar 

  • Szaflarski JP, Schmithorst VJ, Altaye M, Byars AW, Ret J, Plante E, Holland SK (2006) A longitudinal functional magnetic resonance imaging study of language development in children 5 to 11 years old. Ann Neurol 59:796–807

    Article  PubMed  Google Scholar 

  • Talaraich J, Tournoux P (1988) Atlas of the human brain: 3-dimensional proportional system–an approach to cerebral imaging. Thieme, New York

    Google Scholar 

  • Taulu S, Hari R (2009) Removal of magnetoencephalographic artifacts with temporal signal-space separation: demonstration with single-trial auditory-evoked responses. Hum Brain Mapp 30:1524–1534

    Article  PubMed  Google Scholar 

  • Taylor JM, Baldeweg T (2002) Application of EEG, ERP and intracranial recordings to the investigation of cognitive functions in children. Dev Sci 5:318–334

    Article  Google Scholar 

  • Tesan G, Johnon BW, Reid M, Thornton R, Crain S. (2010). Measurement of neuromagnetic brain function in pre-school children with custom sized MEG. J Vis Exp 36. doi:10.3791/1693

  • Wehner DT, Hämäläinen MS, Mody M, Ahlfors SP (2008) Head movements of children in MEG: quantification effects on source estimation and compensation. NeuroImage 40:541–550

    Article  PubMed  Google Scholar 

  • Wilke M, Krägeloh-Mann I, Holland SK (2007) Global and local development of gray and white matter volume in normal children and adolescents. Exp Brain Res 178:296–307

    Article  PubMed  Google Scholar 

  • Wilke M, Holland SK, Altaye M, Gaser C (2008) Template-O-Matic: a toolbox for creating customized pediatric templates. NeuroImage 41:903–913

    Article  PubMed  Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell Scientific, Oxford, pp 3–70

    Google Scholar 

Download references

Acknowledgments

This work was supported by Canadian Institutes of Health Research (CIHR) MOP-81161. The author would like to thank Matt MacDonald and Travis Mills for comments on earlier versions of this manuscript. The author would also like to thank the many dedicated and determined research assistants, technologists, graduate students and post-docs who have made developmental studies possible and successful in our institution. Finally, thanks to the many young participants and their families who volunteer for studies in the Sick Kids MEG lab. Without the gift of their time and energy, these studies would not be possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth W. Pang.

Additional information

This is one of several papers published together in Brain Topography on the “Special Issue: Brain Imaging across the Lifespan”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, E.W. Practical Aspects of Running Developmental Studies in the MEG. Brain Topogr 24, 253–260 (2011). https://doi.org/10.1007/s10548-011-0175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-011-0175-0

Keywords

Navigation