Skip to main content
Log in

Characterisation of a landslide by its fracture system using Electric Resistivity Tomography and Pressure Probe methods

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

We have studied a slowly moving loess landslide along the River Danube in South Hungary. In contrast with other efforts, we aimed to determine its fracture system. Due to the homogeneous composition of the loess, it seems to be the only possibility to get information about the landslide and its further evolution. Beside of the well-known Electrical Resistivity Tomography (ERT) the so-called Pressure Probe (PreP) method was applied to characterise the supposedly dense fracture system. This method was developed to detect and characterise mechanically weak zones, which may not visible from the surface, and may occur e.g. due to landslides. Fracture zones had been especially well localised by the ERT, enabling the prediction of the positions of future rupture surfaces and thus also the delineation of the endangered zones. PreP was able to give a very detailed image about the surface projection of the fractures. Both methods proved to be good to characterise the fracture system of such a landslide area. Geophysical predictions have been verified also in reality: the mass movements occurred about 1½ years after the measurements. Therefore, to provide early risk warnings and to avoid damage to constructions or endangering human life, the application of the ERT and PreP methods is highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Advanced Geosciences, Inc. (2006) Instruction manual for EarthImager 2D, version 2.1.7, Resistivity and IP inversion software

  • Agnesi V, Camardab M, Conoscentia C, Di Maggio A, Dilibertoc I, Madoniac P, Rotiglianoa E (2005) A multidisciplinary approach to the evaluation of the mechanism that triggered the Cerda landslide. (Sicily, Italy). Geomorphology 65:101–116

    Article  Google Scholar 

  • Bányai L, Újvári G, Mentes G, Kovács M, Czap Z, Gribovszki K, Papp G (2014) Recurrent landsliding of a high bank at Dunaszekcső, Hungary: geodetic deformation monitoring and finite element modeling. Geomorphology 210:1–13

    Article  Google Scholar 

  • Bièvre G, Jongmans D, Winiarski T, Zumbo V (2012) Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trieves area, French Alps). Hydrol Process 26:2128–2142

    Article  Google Scholar 

  • Bugya T, Fábián Sz Á, Görcs NL, Kovács IP, Radvánszky B (2011) Surface changes on a landslide affected high bluff in Dunaszekcső (Hungary). Cent Eur J Geosci 3(2):119–128. doi:10.2478/s13533-011-0014-6

    Google Scholar 

  • Caicedo B, Murillo C, Hoyos L, Colmenares JE, Berdugo IR (2013) Advances in unsaturated soils. Taylor and Francis, London, pp 165–169. ISBN 978-0-415-62095-6

    Book  Google Scholar 

  • Fábián SZÁ, Kovács J, Lóczy D, Schweitzer F, Varga G, Babák K, Lampért K, Nagy A (2006) Geomorphologic hazards in the Carpathian foreland, Tolna County (Hungary). Stud Geomorphol Carpath Balc 40:107–118

    Google Scholar 

  • Falco P, Negro F, Szalai S, Milnes E (2013) Fracture characterisation using geoelectric null-arrays. J Appl Geophys 93:33–42

    Article  Google Scholar 

  • Fan C, Liang S, Ma X (2012) Research advances on the loess-bedrock Landslide in China. In: Asia Pacific conference on environmental science and technology, Advances in biomedical engineering, vol 6

  • Francese R, Mazzarini F, Bistacchi A, Morelli G, Pasquarè G, Praticelli N, Robain H, Wardell N, Zaja A (2009) A structural and geophysical approach to the study of fractured aquifers in the Scansano-Magliano in Toscana Ridge, southern Tuscany, Italy. Hydrogeol J 17:1233–1246

    Article  Google Scholar 

  • Füsi B, Madarasi A (2012) Landslide monitoring with combined methodology: geoelectrical anisotropy, PSInSAR and high precision leveling in Dunaszekcső, Hungary, American Geophysical Union, Fall Meeting 2012, abstract#NH13A-1596

  • Galli L (1952) A dunai és balatoni magaspartok állékonyságának törvényszerűségei (The rules of the stability of high bluffs along the Danube and Lake Balaton). Hidrol Közlöny 32:409–415

    Google Scholar 

  • Gyulai Á, Szabó NP (2014) Series expansion based geoelectric inversion methodology used for geoinveronmental investigations. Front Geosci 2(1):11–17

    Google Scholar 

  • Gyulai Á, Baracza MK, Szabó NP (2014) On the application of combined geoelectric weighted inversion in environmental exploration. Environ Earth Sci 71:383–392

    Article  Google Scholar 

  • Hegedűs E (2008) A megcsúszott dunaszekcsői löszfal aktív és passzív szeizmikus vizsgálata (Active and passive seismic investigation of the slipped loess bluff at Dunaszekcső). Technical report, Eötvös Loránd Geofizikai Intézet

  • Jones G, Sentanac P, Zielinski M (2014) Desiccation cracking using 2-D and 3-D electrical resistivity tomography: validation on a flood embankment. J Appl Geophys 106:196–211

    Article  Google Scholar 

  • Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bull Soc Géol Fr 33:101–112

    Article  Google Scholar 

  • Kraft J (2005) A dunaszekcsői Töröklyuk kialakulása és fennmaradása (Evolution and survival of the Töröklyuk cave at Dunaszekcső). Mecsek Egyesület Évkönyve a 2004-es egyesületi évről. Új Évfolyam 8:133–153

    Google Scholar 

  • Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Rizzo E, Sdao F (2005) 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics 70:B11–B18

    Article  Google Scholar 

  • Lebourg T, Binet S, Tric E, Jomard H, El Bedoui S (2005) Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nova 17:399–406

    Article  Google Scholar 

  • Moyzes A, Scheuer G (1978) A dunaszekcsői magaspart mérnökgeológiai vizsgálata (Engineering geological investigation of the high bank at Dunaszekcső). Földt Közlöny 108:213–226

    Google Scholar 

  • Pécsi M, Scheuer G (1979) Engineering geological problems of the Dunaújváros loess bluff. Acta Geol Hung 22:345–353

    Google Scholar 

  • Pécsi M, Schweitzer F, Scheuer G (1979) Engineering geological and geomorphological investigations of landslides in the loess bluffs along the Danube in the Great Hungarian Plain. Acta Geol Hung 22:327–343

    Google Scholar 

  • Perrone A, Lapenna V, Piscitelli S (2014) Electrical resistivity tomography technique for landslide investigation: a review. Earth Sci Rev 135:65–82

    Article  Google Scholar 

  • Solberg IL, Hansen L, Ronning JS, Haugen ED, Dalsegg E, Tonnesen JF (2012) Combined geophysical and geotechnical approach to ground investigations and hazard zonation of a quick clay area, mid-Norway. Bull Eng Geol Environ 71:119–133

    Article  Google Scholar 

  • Szalai S, Szokoli K, Metwaly M (2014) Delineation of landslide endangered areas and mapping their fracture systems by the pressure probe method. Landslides 11(5):923–932

    Article  Google Scholar 

  • Szalai S, Szokoli K, Metwaly M, Gribovszki Z, Prácser E (2016) Prediction of the location of future rupture surfaces of a slowly moving loess landslide by electrical resistivity tomography, Geophysical prospecting. Version of Record online: 25 Aug 2016. doi:10.1111/1365-2478.12421

  • Szanyi, G, Gráczer Z, Bánné Győri E, Kaláb Z, Lednická M (2016) Ambient seismic noise tomography of a loess high bank at Dunaszekcső (Hungary). Pure Appl Geophys 173(8):2913-2928. ISSN 0033-4553

  • Tofani V, Segoni S, Agostini A, Catani F, Casagli N (2013) Technical note: use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sci 13:299–309

    Article  Google Scholar 

  • Uhlemann S, Wilkinson PB, Chambers JE, Maurer H, Merrit AJ, Gunn DA, Meldrum PI (2015) Interpolation of landslide movements to improve the accuracy of 4D geoelectrical monitoring. J Appl Geophys 121:93–105

    Article  Google Scholar 

  • Újvári G, Mentes G, Bányai L, Kraft J, Gyimóthy A, Kovács J (2009) Evolution of a bank failure along the River Danube at Dunaszekcső, Hungary. Geomorphology 109:197–209

    Article  Google Scholar 

  • Zhou B, Dahlin T (2003) Properties and effects of measurement errors on 2D resistivity imaging surveying. Near Surf Geophys 1:105–117

    Article  Google Scholar 

  • Zilahi-Sebess L, Kovács AC, Gúthy T, Hegedűs E, Csabafi R (2009) Komplex geofizikai vizsgálatok a megcsúszott dunaszekcsői löszfal környezetében, VII. Földtani Veszélyforrások Konferencia, 2009

Download references

Acknowledgements

We would like to express our thanks to Csaba Molnár and Ádám Tóth for their collaboration in the field survey and data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Szokoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szokoli, K., Szarka, L., Metwaly, M. et al. Characterisation of a landslide by its fracture system using Electric Resistivity Tomography and Pressure Probe methods. Acta Geod Geophys 53, 15–30 (2018). https://doi.org/10.1007/s40328-017-0199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-017-0199-3

Keywords

Navigation