Skip to main content
Log in

Gravity-Assist Low-Thrust Inter-System Trajectory Design with Manifold Captures

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

When traveling across multiple planetary or moon systems, invariant manifold structures may be leveraged to allow for efficient transfer within multi-body dynamics. However, the sole use of these structures is restrictive in many cases, as the manifold may not reach a desired departure or arrival location in the phase space. In particular, the use of low-thrust propulsion together with manifold dynamics requires an optimization framework that captures these mechanisms into a single problem. This work proposes an approach to design gravity-assist low-thrust transfers that leverage manifold structures at departure or arrival. The approach involves a modification to the Sims-Flanagan transcription by incorporating parametrization of arrival to a manifold Poincaré section instead of a celestial body. A key advantage is its use of two-body dynamics for the propagation of the majority of the transfer. This enables large-scale and realistic assessment of possible solutions through a combination of ODE-based propagation of the manifold, and Lagrange coefficients-based propagation of the inter-system portion of the transfer. Leveraging the proposed method, a low-thrust transfer from Earth to the Sun-Venus system, also incorporating an Earth fly-by in between, is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ross, S.D.: The interplanetary transport network. Am. Sci. 94 (3), 230–237 (2006). https://doi.org/10.1511/2006.59.994

    Article  Google Scholar 

  2. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems the Three-Body Problem and Space Mission Design (2011)

  3. Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Interplanetary and lunar transfers using libration points. In: Proceedings of the 18th International Symposium on Space Flight Dynamics, ESA Special Publication, vol. ESA SP-548, pp. 583–588. ESA (2004)

    Google Scholar 

  4. Eapen, R.T., Sharma, R.K.: Mars interplanetary trajectory design via Lagrangian points. Astrophy. Space Sci. 353(1), 65–71 (2014). https://doi.org/10.1007/s10509-014-2012-x

    Article  Google Scholar 

  5. Topputo, F., Belbruno, E.: Earth–Mars transfers with ballistic capture. Celest. Mech. Dyn. Astron. 121(4), 329–346 (2015). https://doi.org/10.1007/s10569-015-9605-8

    Article  MathSciNet  Google Scholar 

  6. Canales, D., Howell, K.C., Fantino, E.: Transfer design between neighborhoods of planetary moons in the circular restricted three-body problem: the moon-to-moon analytical transfer method. Celest. Mech. Dyn. Astron. 133(8), 1–44 (2021). https://doi.org/10.1007/s10569-021-10031-x

    Article  MathSciNet  Google Scholar 

  7. Pernicka, H., Henry, D., Chan, M.: Use of halo orbits to provide a communication link between Earth and Mars. In: AIAA/AAS Astrodynamics Conference. pp. 445–455. https://doi.org/10.2514/6.1992-4585 (1992)

  8. Strizzi, J.D., Kutrieb, J.M., Damphousse, P.E., Carrico, J.P.: Sun-Mars libration points and Mars mission simulations. In: AAS/AIAA Astrodynamics Specialist Conference. pp. 807–822 (2001)

  9. Shirobokov, M., Trofimov, S., Ovchinnikov, M.: On the design of a space telescope orbit around the Sun–Venus L2 point. Adv. Space Res. 65(6), 1591–1606 (2020). https://doi.org/10.1016/j.asr.2019.12.022

    Article  Google Scholar 

  10. Kovalenko, I.D., Eismont, N.A., Limaye, S.S., Zasova, L.V., Gorinov, D.A., Simonov, A.V.: Micro-spacecraft in Sun-Venus Lagrange point orbit for the Venera-D mission. Adv. Space Res. 66(1), 21–28 (2020). https://doi.org/10.1016/j.asr.2019.10.027

    Article  Google Scholar 

  11. Senske, D., Zasova, L., Burdanov, A., Economou, T., Eismont, N., Gerasimov, M., Gorinov, D., Hall, J., Ignatiev, N., Ivanov, M., Lea Jessup, K., Khatuntsev, I., Korablev, O., Kremic, T., Limaye, S., Lomakin, I., Martynov, M., Ocampo, A., Teselkin, S., Vaisberg, O., Voronstsov, V.: Development of the Venera-D mission concept from science objectives to mission architecture. In: 49th Lunar and Planetary Science Conference (2018)

  12. Tanaka, Y., Kawakatsu, Y., Yoshimura, H.: Design of escaping trajectory from mars by using a halo orbit as hub and a method of Delta V reduction. In: 28th Workshop on JAXA Astrodynamics and Flight Mechanics (2018)

  13. Sims, J.A., Flanagan, N.: Preliminary design of low-thrust interplanetary missions. In: AAS Astrodynamics Specialists Conference (1999)

  14. Sims, J.A., Finlayson, P.A., Rinderle, E.A., Vavrina, M.A., Kowalkowski, T.D.: Implementation of a low-thrust trajectory optimization algorithm for preliminary design. In: AIAA/AAS Astrodynamics Specialist Conference. https://doi.org/10.2514/6.2006-6746 (2006)

  15. McConaghy, T.T., Debban, T.J., Petropoulos, A.E., Longuski, J.M.: Design and optimization of low-thrust trajectories with gravity assists. J. Spacecr. Rocket. 40(3), 380–387 (2003). https://doi.org/10.2514/2.3973

    Article  Google Scholar 

  16. Yam, C.H., McConaghy, T.T., Chen, K.J., Longuski, J.M.: Design of low-thrust gravity-assist trajectories to the outer planets. In: 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, AIAA 2004-A.6.02 (2004). https://doi.org/10.2514/6.IAC-04-A.6.02

    Google Scholar 

  17. Yam, C.H., Izzo, D., Lorenzo, D.D.: Low-thrust trajectory design as a constrained global optimization problem. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 225(11), 1243–1251 (2011). https://doi.org/10.1177/0954410011401686

    Article  Google Scholar 

  18. Yam, C.H., Izzo, D., Biscani, F: Towards a high fidelity direct transcription method for optimisation of low-thrust trajectories. In: 4th Conference on Astrodynamics Tools and Techniques. pp. 1–7 (2010)

  19. Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamic. Dover Publications, New York (1971)

    Google Scholar 

  20. Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22(3), 241–253 (1979). https://doi.org/10.1007/BF01229511

    Article  MathSciNet  Google Scholar 

  21. Howell, K.C.: Three-dimensional, periodic, halo orbits. Celest. Mech. 32(53) (1984). https://doi.org/10.1007/BF01358403

  22. Shimane, Y., Ho, K.: Robustness assessment of low-thrust trajectory via sequentially truncated Sims-Flanagan problems. AIAA ASCEND, Las Vegas. pp. 1–16. https://doi.org/10.2514/6.2021-4153 (2021)

  23. Conway, B.A.: An improved algorithm due to laguerre for the solution of Kepler’s equation. Celest. Mech. 39(1980), 199–211 (1986)

    Article  Google Scholar 

  24. Der, G.J.: An elegant state transition matrix. J. Astronaut. Sci. 45(4), 776–791 (1996). https://doi.org/10.2514/6.1996-3660

    MathSciNet  Google Scholar 

  25. Englander, J.A., Englander, A.C.: Tuning monotonic basin hopping: Improving the efficiency of stochastic search as applied to low-thrust trajectory optimization. International Symposium on Space Flight Dynamics. pp. 1–33 (2014)

  26. Englander, J.A., Knittel, J.M., Williams, K., Stanbridge, D., Ellison, D.H.: Validation of a low-thrust mission design tool using operational navigation software. AAS/AIAA Space Flight Mech. Meeting 160, 3899–3918 (2017)

    Google Scholar 

  27. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005). https://doi.org/10.1137/S0036144504446096

    Article  MathSciNet  Google Scholar 

  28. Wȧchter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  Google Scholar 

  29. Wales, D.J., Doye, J.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 Atoms. J. Phys. Chem. A. 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  30. Izzo, D.: PyGMO and PyKEP: open source tools for massively parallel optimization in astrodynamics (the case of interplanetary trajectory optimization). 5th International Conference Astrodynamics Tools and Techniques (2012)

  31. McCarty, S.L., McGuire, M.L.: Parallel monotonic basin hopping for low thrust trajectory optimization. Space Flight Mechanics Meeting, 2018, No. 210009. https://doi.org/10.2514/6.2018-1452 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koki Ho.

Ethics declarations

Conflict of Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Algorithm for Low-Thrust Approximation Via Successive Impulses in Two-Body System

Appendix: Algorithm for Low-Thrust Approximation Via Successive Impulses in Two-Body System

Algorithm 3 is used for propagating the state-vector in the inter-system portion.

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimane, Y., Ho, K. Gravity-Assist Low-Thrust Inter-System Trajectory Design with Manifold Captures. J Astronaut Sci 69, 193–217 (2022). https://doi.org/10.1007/s40295-022-00319-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00319-x

Navigation