Skip to main content
Log in

Effects of Colchicine on Cardiovascular Outcomes in Patients with Coronary Artery Disease: A Systematic Review and One-Stage and Two-Stage Meta-Analysis of Randomized-Controlled Trials

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Aim

Colchicine has received emerging interest due to its cardiovascular benefits in patients with coronary artery disease (CAD). We conducted a one-stage meta-analysis of reconstructed individual patient data (IPD) from randomized-controlled trials to summarize the effects of colchicine on cardiovascular outcomes in patients with CAD.

Methods

Four databases (PubMed, Embase, Cochrane, SCOPUS) were searched for articles published from inception to 30th September 2020, examining the effect of colchicine on cardiovascular outcomes in patients with CAD, yielding 10 randomized-controlled trials with a combined cohort of 12,781 patients. IPD was reconstructed from Kaplan–Meier curves published in 3 studies and analysed using the shared-frailty Cox model. Aggregate data meta-analysis of all 10 studies was performed for outcomes unsuitable for IPD reconstruction.

Results

In patients receiving colchicine compared to placebo, one-stage meta-analysis demonstrated a hazard ratio of 0.70 (95% CI 0.61–0.80) for the composite outcome of cardiovascular death, non-fatal myocardial infarction, non-fatal stroke, and urgent hospitalization for angina requiring coronary revascularization. Aggregate data meta-analysis demonstrated a significant reduction in hazard rate for stroke (HR 0.45; 95% CI 0.27–0.75) and urgent revascularization (HR 0.59; 95% CI 0.38–0.91); and a relative risk reduction for myocardial infarction (RR 0.72; 95% CI of 0.52–1.00) and post-operative atrial fibrillation (RR 0.64; 95% CI 0.48–0.86).

Conclusion

Given the significant benefits of colchicine demonstrated on IPD, and its consistent benefits when analyzed using aggregate data meta-analysis, we propose that colchicine may be considered as an additional pharmacological adjunct to the first line therapy for patients with coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

IPD:

Individual Patient data

PRISMA:

Preferred reporting items of systematic reviews and meta-analyses

MACE:

Major adverse cardiac events

References

  1. Bauersachs R, Zeymer U, Brière JB, Marre C, Bowrin K, Huelsebeck M. Burden of coronary artery disease and peripheral artery disease: a literature review. Cardiovasc Ther. 2019;2019:8295054. https://doi.org/10.1155/2019/8295054.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet (London, England). 2017;390(10100):1211–59. https://doi.org/10.1016/S0140-6736(17)32154-2.

    Article  Google Scholar 

  3. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: the Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2020;41(3):407–77. https://doi.org/10.1093/eurheartj/ehz425.

    Article  PubMed  Google Scholar 

  4. Tong DC, Quinn S, Nasis A, Hiew C, Roberts-Thomson P, Adams H, et al. Colchicine in patients with acute coronary syndrome: the Australian COPS randomized clinical trial. Circulation. 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.050771.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54(23):2129–38. https://doi.org/10.1016/j.jacc.2009.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–505. https://doi.org/10.1056/NEJMoa1912388.

    Article  CAS  PubMed  Google Scholar 

  7. Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2021372.

    Article  PubMed  Google Scholar 

  8. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Guyot P, Ades AE, Ouwens MJNM, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan–Meier survival curves. BMC Med Res Methodol. 2012;12(1):9. https://doi.org/10.1186/1471-2288-12-9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. StataCorp. . Stata statistical software: release 16. College Station: StataCorp LLC; 2019.

    Google Scholar 

  11. Gasmi Benahmed A, Gasmi A, Arshad M, Shanaida M, Lysiuk R, Peana M, et al. Health benefits of xylitol. Appl Microbiol Biotechnol. 2020. https://doi.org/10.1007/s00253-020-10708-7.

    Article  PubMed  Google Scholar 

  12. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane handbook for systematic reviews of interventions. 2nd ed. The Cochrane Collaboration; 2019.

    Book  Google Scholar 

  13. Syn NL, Cummings DE, Wang LZ, Lin DJ, Zhao JJ, Loh M et al. Association of metabolic-bariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174,772 participants. The Lancet. 2021 (In-Press).

  14. Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81(3):515–26. https://doi.org/10.1093/biomet/81.3.515.

    Article  Google Scholar 

  15. Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika. 1982;69(1):239–41. https://doi.org/10.1093/biomet/69.1.239.

    Article  Google Scholar 

  16. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. https://doi.org/10.1136/bmj.d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schünemann HB, Guyatt G, Oxman A. Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach. 2013.

  18. Akodad M, Lattuca B, Nagot N, Georgescu V, Buisson M, Cristol JP, et al. COLIN trial: value of colchicine in the treatment of patients with acute myocardial infarction and inflammatory response. Arch Cardiovasc Dis. 2017;110(6–7):395–402. https://doi.org/10.1016/j.acvd.2016.10.004.

    Article  PubMed  Google Scholar 

  19. Hennessy T, Soh L, Bowman M, Kurup R, Schultz C, Patel S, et al. The low dose colchicine after myocardial infarction (LoDoCo-MI) study: a pilot randomized placebo controlled trial of colchicine following acute myocardial infarction. Am Heart J. 2019;215:62–9. https://doi.org/10.1016/j.ahj.2019.06.003.

    Article  CAS  PubMed  Google Scholar 

  20. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61(4):404–10. https://doi.org/10.1016/j.jacc.2012.10.027.

    Article  CAS  PubMed  Google Scholar 

  21. Sarzaeem M, Shayan N, Bagheri J, Jebelli M, Mandegar M. Low dose colchicine in prevention of atrial fibrillation after coronary artery bypass graft: a double blind clinical trial. Tehran Univ Med J. 2014;72(3):147–54.

    Google Scholar 

  22. Tabbalat RA, Hamad NM, Alhaddad IA, Hammoudeh A, Akasheh BF, Khader Y. Effect of ColchiciNe on the InciDence of Atrial fibrillation in open heart surgery patients: END-AF Trial. Am Heart J. 2016;178:102–7. https://doi.org/10.1016/j.ahj.2016.05.006.

    Article  PubMed  Google Scholar 

  23. Tabbalat RA, Alhaddad I, Hammoudeh A, Khader YS, Khalaf HA, Obaidat M, et al. Effect of low-dose ColchiciNe on the InciDence of atrial fibrillation in open heart surgery patients: END-AF low dose trial. J Int Med Res. 2020;48(7):300060520939832. https://doi.org/10.1177/0300060520939832.

    Article  CAS  PubMed  Google Scholar 

  24. Zarpelon CS, Netto MC, Jorge JC, Fabris CC, Desengrini D, Jardim Mda S, et al. Colchicine to reduce atrial fibrillation in the postoperative period of myocardial revascularization. Arq Bras Cardiol. 2016;107(1):4–9. https://doi.org/10.5935/abc.20160082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anselmi A, Possati G, Gaudino M. Postoperative inflammatory reaction and atrial fibrillation: simple correlation or causation? Ann Thorac Surg. 2009;88(1):326–33. https://doi.org/10.1016/j.athoracsur.2009.01.031.

    Article  PubMed  Google Scholar 

  26. Alene M, Assemie MA, Yismaw L, Ketema DB. Magnitude of risk factors and in-hospital mortality of stroke in Ethiopia: a systematic review and meta-analysis. BMC Neurol. 2020;20(1):309. https://doi.org/10.1186/s12883-020-01870-6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch Intern Med. 1994;154(13):1449-57.

  28. Go AS, Hylek EM, Borowsky LH, Phillips KA, Selby JV, Singer DE. Warfarin use among ambulatory patients with nonvalvular atrial fibrillation: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study. Ann Intern Med. 1999;131(12):927–34. https://doi.org/10.7326/0003-4819-131-12-199912210-00004.

    Article  CAS  PubMed  Google Scholar 

  29. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22(8):983–8. https://doi.org/10.1161/01.STR.22.8.983.

    Article  CAS  PubMed  Google Scholar 

  30. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC, et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation. 2019;140(2):e125–51. https://doi.org/10.1161/CIR.0000000000000665.

    Article  PubMed  Google Scholar 

  31. Landefeld CS, Beyth RJ. Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention. Am J Med. 1993;95(3):315–28. https://doi.org/10.1016/0002-9343(93)90285-w.

    Article  CAS  PubMed  Google Scholar 

  32. Beyth RJ, Quinn L, Landefeld CS. A multicomponent intervention to prevent major bleeding complications in older patients receiving warfarin. A randomized, controlled trial. Ann Intern Med. 2000;133(9):687–95. https://doi.org/10.7326/0003-4819-133-9-200011070-00010.

    Article  CAS  PubMed  Google Scholar 

  33. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347(20):1557–65. https://doi.org/10.1056/NEJMoa021993.

    Article  CAS  PubMed  Google Scholar 

  34. Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshipura K, et al. Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med. 2004;351(25):2599–610. https://doi.org/10.1056/NEJMoa040967.

    Article  CAS  PubMed  Google Scholar 

  35. Boekholdt SM, Hack CE, Sandhu MS, Luben R, Bingham SA, Wareham NJ, et al. C-reactive protein levels and coronary artery disease incidence and mortality in apparently healthy men and women: the EPIC-Norfolk prospective population study 1993–2003. Atherosclerosis. 2006;187(2):415–22. https://doi.org/10.1016/j.atherosclerosis.2005.09.023.

    Article  CAS  PubMed  Google Scholar 

  36. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  37. Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207. https://doi.org/10.1056/NEJMoa0807646.

    Article  CAS  PubMed  Google Scholar 

  38. Leung YY, Yao Hui LL, Kraus VB. Colchicine-update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 2015;45(3):341–50. https://doi.org/10.1016/j.semarthrit.2015.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Samuel M, Tardif J-C, Bouabdallaoui N, Khairy P, Dubé M-P, Blondeau L, et al. Colchicine for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Can J Cardiol. 2020. https://doi.org/10.1016/j.cjca.2020.10.006.

    Article  PubMed  Google Scholar 

  40. Verma S, Eikelboom JW, Nidorf SM, Al-Omran M, Gupta N, Teoh H, et al. Colchicine in cardiac disease: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2015;15:96. https://doi.org/10.1186/s12872-015-0068-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lennerz C, Barman M, Tantawy M, Sopher M, Whittaker P. Colchicine for primary prevention of atrial fibrillation after open-heart surgery: systematic review and meta-analysis. Int J Cardiol. 2017;249:127–37. https://doi.org/10.1016/j.ijcard.2017.08.039.

    Article  PubMed  Google Scholar 

  42. Simmonds MC, Higginsa JPT, Stewartb LA, Tierneyb JF, Clarke MJ, Thompson SG. Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials. 2005;2(3):209–17. https://doi.org/10.1191/1740774505cn087oa.

    Article  PubMed  Google Scholar 

  43. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ. 2010;340:c221. https://doi.org/10.1136/bmj.c221.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hui Sia.

Ethics declarations

Funding

This work was supported by the National University of Singapore Yong Loo Lin School of Medicine’s Junior Academic Faculty Scheme to CS.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The data used for this study will be shared on reasonable request to the corresponding author.

Code availability

The software used for analysis include STATA Version 16.1 and Review Manager Version 5.4.

Author contributions

YNT, YHT, NLS, and CS designed the study and developed the study protocol and tools. YNT, YNT, MWG, and CSYY were responsible for data collection. YNT, YHT, NLS, and CS analyzed data and wrote the manuscript. All authors contributed to the conceptualization of the research questions, interpretation of the results, and manuscript writing and revision. All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, Y.N., Teo, Y.H., Syn, N.L. et al. Effects of Colchicine on Cardiovascular Outcomes in Patients with Coronary Artery Disease: A Systematic Review and One-Stage and Two-Stage Meta-Analysis of Randomized-Controlled Trials. High Blood Press Cardiovasc Prev 28, 343–354 (2021). https://doi.org/10.1007/s40292-021-00460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-021-00460-y

Keywords

Navigation