Skip to main content

Advertisement

Log in

Oxidative Stress in β-Thalassemia

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Cell oxidative status, which represents the balance between oxidants and antioxidants, is involved in normal functions. Under pathological conditions, there is a shift toward the oxidants, leading to oxidative stress, which is cytotoxic, causing oxidation of cellular components that result in cell death and organ damage. Thalassemia is a hereditary hemolytic anemia caused by mutations in globin genes that cause reduced or complete absence of specific globin chains (commonly, α or β). Although oxidative stress is not the primary etiology of thalassemia, it mediates several of its pathologies. The main causes of oxidative stress in thalassemia are the degradation of the unstable hemoglobin and iron overload—both stimulate the production of excess free radicals. The symptoms aggravated by oxidative stress include increased hemolysis, ineffective erythropoiesis and functional failure of vital organs such as the heart and liver. The oxidative status of each patient is affected by multiple internal and external factors, including genetic makeup, health conditions, nutrition, physical activity, age, and the environment (e.g., air pollution, radiation). In addition, oxidative stress is influenced by the clinical manifestations of the disease (unpaired globin chains, iron overload, anemia, etc.). Application of personalized (theranostics) medicine principles, including diagnostic tests for selecting targeted therapy, is therefore important for optimal treatment of the oxidative stress of these patients. We summarize the role of oxidative stress and the current and potential antioxidative therapeutics in β-thalassemia and describe some methodologies, mostly cellular, that might be helpful for application of a theranostics approach to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fibach E, Rachmilewitz E. The Role of Oxidative Stress in Hemolytic Anemia. Curr Mol Med. 2008;8(7):609–19.

    Article  CAS  PubMed  Google Scholar 

  2. Weatherall DJ. The thalassemia syndromes. Tex Rep Biol Med. 1980;40:323–33.

    CAS  PubMed  Google Scholar 

  3. Fibach E, Rachmilewitz E. Iron overload in hematological disorders La Presse Medicale. 2017; In Press

  4. Rund D. Thalassemia 2016: Modern medicine battles an ancient disease. Am J Hematol. 2016;91(1):15–21.

    Article  PubMed  Google Scholar 

  5. Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. 3rd ed. Avon: Oxford University Press; 1999.

    Google Scholar 

  6. Dunn JD, Alvarez LAJ, Zhang XZ, Soldati T. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015;6:472–85.

    Article  CAS  Google Scholar 

  7. Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in beta-thalassaemia and sickle cell disease. Redox Biol. 2015;6:226–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem. 1972;247(21):6960–2.

    CAS  PubMed  Google Scholar 

  9. Babior BM. Oxidizing radicals and red cell destruction. Prog Clin Biol Res. 1981;51:173–95.

    CAS  PubMed  Google Scholar 

  10. Faivre-Fiorina B, Caron A, Labrude P, Vigneron C. Erythrocyte, plasma and substitute hemoglobins facing physiological oxidizing and reducing agents. Ann Biol Clin (Paris). 1998;56(5):545–56.

    CAS  PubMed  Google Scholar 

  11. Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P. Redox state of glutathione in human plasma. Free Radic Biol Med. 2000;28(4):625–35.

    Article  CAS  PubMed  Google Scholar 

  12. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014. https://doi.org/10.1155/2014/761264.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Han YH, Kim SU, Kwon TH, Lee DS, Ha HL, Park DS, et al. Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. Biochem Biophys Res Commun. 2012;426(3):427–32.

    Article  CAS  PubMed  Google Scholar 

  14. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA. 1988;85(24):9748–52.

    Article  CAS  PubMed  Google Scholar 

  15. Rund D, Rachmilewitz E. Medical progress: beta-thalassemia. N Engl J Med. 2005;353(11):1135–46.

    Article  CAS  PubMed  Google Scholar 

  16. Rachmilewitz E, Peisach J, Bradley T, Blumberg W. Role of haemichromes in the formation of inclusion bodies in haemoglobin H disease. Nature. 1969;222:248–50.

    Article  CAS  PubMed  Google Scholar 

  17. Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–97.

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011;434(3):365–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Breuer W, Hershko C, Cabantchik ZI. The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci. 2000;23(3):185–92.

    Article  CAS  PubMed  Google Scholar 

  20. Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics. 2017;9(10):1367–75.

    Article  CAS  PubMed  Google Scholar 

  21. Prus E, Fibach E. Uptake of non-transferrin iron by erythroid cells. Anemia. 2011;2011:945289.

    Article  CAS  PubMed  Google Scholar 

  22. Camaschella C, Pagani A, Nai A, Silvestri L. The mutual control of iron and erythropoiesis. Int J Lab Hematol. 2016;38:20–6.

    Article  PubMed  Google Scholar 

  23. Prus E, Fibach E. The labile iron pool in human erythroid cells. Br J Haematol. 2008;142(2):301–7.

    Article  PubMed  Google Scholar 

  24. Prus E, Fibach E. Flow cytometry measurement of the labile iron pool in human hematopoietic cells. Cytometry A. 2008;73(1):22–7.

    Article  PubMed  Google Scholar 

  25. Jacobs A. Low molecular weight intracellular iron transport compounds. Blood. 1977;50(3):433–9.

    CAS  PubMed  Google Scholar 

  26. Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90(1):1–37.

    Article  CAS  PubMed  Google Scholar 

  27. Taher AT, Saliba AN. Iron overload in thalassemia: different organs at different rates. Hematol Am Soc Hematol Educ Prog. 2017:265-71.

  28. Hellstrom-Lindberg E. Management of anemia associated with myelodysplastic syndrome. Semin Hematol. 2005;42(2):S10–3.

    Article  CAS  PubMed  Google Scholar 

  29. Ganz T. Hepcidin and the global burden of iron deficiency. Clin Chem. 2015;61(4):577–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta-Mol Cell Res. 2012;1823(9):1434–43.

    Article  CAS  Google Scholar 

  31. Gardenghi S, Marongiu M, Ramos P, Guy E, Breda L, Chadburn A, et al. Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down regulation of hepcidin and up regulation of ferroportin. Blood. 2006;108(11):443A–4A.

    Google Scholar 

  32. Choi SO, Cho YS, Kim HL, Park JW. ROS mediate the hypoxic repression of the hepcidin gene by inhibiting C/EBP alpha and STAT-3. Biochem Biophys Res Commun. 2007;356(1):312–7.

    Article  CAS  PubMed  Google Scholar 

  33. Miura K, Taura K, Kodama Y, Brenner DA. Histone deacetylase inhibition restores hepcidin expression in Hcv replicon cells. Hepatology. 2008;48(4):789A–90A.

    Google Scholar 

  34. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Investig. 2007;117(7):1926–32.

    Article  CAS  PubMed  Google Scholar 

  35. Fraenkel P. Anemia of inflammation: a review. Med Clin North Am. 2017;101(2):285–96.

    Article  PubMed  Google Scholar 

  36. Semenza GL. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood. 2009;114(10):2015–9.

    Article  CAS  PubMed  Google Scholar 

  37. Dormandy TL. The autoxidation of red cells. Br J Haematol. 1971;20(5):457–61.

    Article  CAS  PubMed  Google Scholar 

  38. Winterbourn CC, Carrell RW. Studies of hemoglobin denaturation and Heinz body formation in the unstable hemoglobins. J Clin Invest. 1974;54(3):678–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amer J, Goldfarb A, Fibach E. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur J Haematol. 2003;70(2):84–90.

    Article  CAS  PubMed  Google Scholar 

  40. Rice-Evans C, Omorphos SC, Baysal E. Sickle cell membranes and oxidative damage. Biochem J. 1986;237(1):265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Das-Chaudhuri AB. Genetic basis of human scalp hair weight: a twin study. Ann Hum Biol. 1980;7(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  42. Asakura T, Onishi T, Friedman S, Schwartz E. Abnormal precipitation of oxyhemoglobin S by mechanical shaking. Proc Natl Acad Sci USA. 1974;71(5):1594–8.

    Article  CAS  PubMed  Google Scholar 

  43. Chiu D, Kuypers F, Lubin B. Lipid peroxidation in human red cells. Semin Hematol. 1989;26(4):257–76.

    CAS  PubMed  Google Scholar 

  44. Ideguchi H. Effects of abnormal Hb on red cell membranes. Rinsho Byori. 1999;47(3):232–7.

    CAS  PubMed  Google Scholar 

  45. Lauf PK, Adragna NC. K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem. 2000;10(5–6):341–54.

    Article  CAS  PubMed  Google Scholar 

  46. Duranton C, Huber SM, Lang F. Oxidation induces a Cl(-)-dependent cation conductance in human red blood cells. J Physiol. 2002;539(Pt 3):847–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dussiot M, Maciel TT, Fricot A, Chartier C, Negre O, Veiga J et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia. Nature Medicine. 2014;20(4):398.

  48. Schrier SL, Centis F, Verneris M, Ma L, Angelucci E. The role of oxidant injury in the pathophysiology of human thalassemias. Redox Rep. 2003;8(5):241–5.

    Article  CAS  PubMed  Google Scholar 

  49. Eldor A, Rachmilewitz EA. The hypercoagulable state in thalassemia. Blood. 2002;99(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  50. Eldor A. Abnormal platelet functions in beta thalassaemia. Scand J Haematol. 1978;20(5):447–52.

    Article  CAS  PubMed  Google Scholar 

  51. Hussain MA, Hutton RA, Pavlidou O, Hoffbrand AV. Platelet function in beta-thalassaemia major. J Clin Pathol. 1979;32(5):429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rinder HM, Snyder EL, Bonan JL, Napychank PA, Malkus H, Smith BR. Activation in stored platelet concentrates: correlation between membrane expression of P-selectin, glycoprotein IIb/IIIa, and beta-thromboglobulin release. Transfusion. 1993;33(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  53. Pasin M, Yavuzer S, Tekin M, Akar N, Violi F. Oxygen free radical-dependent increased platelet function in beta-thalassemia major patients. Thromb Res. 1998;92(6):283–6.

    Article  CAS  PubMed  Google Scholar 

  54. Eidt JF, Allison P, Noble S, Ashton J, Golino P, McNatt J, et al. Thrombin is an important mediator of platelet aggregation in stenosed canine coronary arteries with endothelial injury. J Clin Invest. 1989;84(1):18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hanson SR, Harker LA. Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone. Proc Natl Acad Sci USA. 1988;85(9):3184–8.

    Article  CAS  PubMed  Google Scholar 

  56. Blockmans D, Deckmyn H, Vermylen J. Platelet activation. Blood Rev. 1995;9(3):143–56.

    Article  CAS  PubMed  Google Scholar 

  57. Iuliano L, Colavita AR, Leo R, Pratico D, Violi F. Oxygen free radicals and platelet activation. Free Radic Biol Med. 1997;22(6):999–1006.

    Article  CAS  PubMed  Google Scholar 

  58. Amer J, Fibach E. Oxidative status of platelets in normal and thalassemic blood. Thromb Haemost. 2004;92(5):1052–9.

    Article  CAS  PubMed  Google Scholar 

  59. Amer J, Fibach E. Chronic oxidative stress reduces the respiratory burst response of neutrophils from beta-thalassaemia patients. Br J Haematol. 2005;129(3):435–41.

    Article  CAS  PubMed  Google Scholar 

  60. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620–50.

    Article  CAS  PubMed  Google Scholar 

  61. Mason R. In vitro and in vivo detection of free radicals metabolites with ESR. In: Punchard N, Kelly F, editors. In: Free Radicals: A Practical Approach. Oxford, England: IRL Press; 1996. p. 11–24.

  62. Halliwell B, Kaur H. Hydroxylation of salicylate and phenylalanine as assays for hydroxyl radicals: a cautionary note visited for the third time. Free Radic Res. 1997;27(3):239–44.

    Article  CAS  PubMed  Google Scholar 

  63. Biaglow JE, Manevich Y, Uckun F, Held KD. Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method. Free Radic Biol Med. 1997;22(7):1129–38.

    Article  CAS  PubMed  Google Scholar 

  64. Kuthan H, Ullrich V, Estabrook RW. A quantitative test for superoxide radicals produced in biological systems. Biochem J. 1982;203(3):551–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Amano F, Noda T. Improved detection of nitric oxide radical (NO.) production in an activated macrophage culture with a radical scavenger, carboxy PTIO and Griess reagent. FEBS Lett. 1995;368(3):425–8.

    Article  CAS  PubMed  Google Scholar 

  66. Cordelli E, Fresegna AM, D’Alessio A, Eleuteri P, Spano M, Pacchierotti F, et al. ReProComet: a new in vitro method to assess DNA damage in mammalian sperm. Toxicol Sci. 2007;99(2):545–52.

    Article  CAS  PubMed  Google Scholar 

  67. Levine R, Wehr N, Wikkiams J, Stadtman E, Shacter E. Determination of carbonyl groups in oxidized proteins. Methods Mol Biol. 2000;99:15–24.

    CAS  PubMed  Google Scholar 

  68. Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med. 1999;27(11–12):1173–81.

    Article  CAS  PubMed  Google Scholar 

  69. Esterbauer H. Estimation of peroxidative damage. Pathol Biol (Paris). 1996;44(1):25–8.

    CAS  Google Scholar 

  70. Minetti M, Agati L, Malorni W. The microenvironment can shift erythrocytes from a friendly to a harmful behavior: Pathogenetic implications for vascular diseases. Cardiovasc Res. 2007;75(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  71. Ginsburg I, Sadovnic M, Oron M, Kohen R. Novel chemiluminescence-inducing cocktails, part II: measurement of the anti-oxidant capacity of vitamins, thiols, body fluids, alcoholic beverages and edible oils. Inflammopharmacology. 2004;12(4):305–20.

    Article  CAS  PubMed  Google Scholar 

  72. Koren E, Kohen R, Ginsburg I. Polyphenols enhance total oxidant-scavenging capacities of human blood by binding to red blood cells. Exp Biol Med (Maywood). 2010;235(6):689–99.

    Article  CAS  PubMed  Google Scholar 

  73. Ginsburg I, Kohen R, Koren E. Quantifying oxidant-scavenging ability of blood. N Engl J Med. 2011;364(9):883–5.

    Article  CAS  PubMed  Google Scholar 

  74. Brown M, Wittwer C. Flow cytometry: Principles and clinical applications in hematology. Clin Chem. 2000;46(8B):1221–9.

    CAS  PubMed  Google Scholar 

  75. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M. Flow cytometric studies of oxidative product formation by neutrophils–a graded response to membrane stimulation. Journal of Immunology. 1983;130(4):1910–7.

    CAS  Google Scholar 

  76. Rothe G, Oser A, Valet G. Dihydrorhodamine 123: a new flow cytometric indicator for respiratory burst activity in neutrophil granulocytes. Naturwissenschaften. 1988;75(7):354–5.

    Article  CAS  PubMed  Google Scholar 

  77. O’Connor JE, Kimler BF, Morgan MC, Tempas KJ. A flow cytometric assay for intracellular nonprotein thiols using mercury orange. Cytometry. 1988;9(6):529–32.

    Article  PubMed  Google Scholar 

  78. Amer J, Goldfarb A, Fibach E. Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells. Cytometry A. 2004;60(1):73–80.

    Article  PubMed  Google Scholar 

  79. Freikman I, Amer J, Ringel I, Fibach E. A flow cytometry approach for quantitative analysis of cellular phosphatidylserine distribution and shedding. Anal Biochem. 2009;393(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  80. Ogawa Y, Kobayashi T, Nishioka A, Kariya S, Hamasato S, Seguchi H, et al. Radiation-induced oxidative DNA damage, 8-oxoguanine, in human peripheral T cells. Int J Mol Med. 2003;11(1):27–32.

    CAS  PubMed  Google Scholar 

  81. Fibach E, Rachmilewitz EA. The effect of fermented papaya preparation on radioactive exposure. Radiat Res. 2015;184(3):304–13.

    Article  CAS  PubMed  Google Scholar 

  82. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–9.

    Article  CAS  PubMed  Google Scholar 

  83. Rottenberg H, Wu SL. Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta Mol Cell Res. 1998;1404(3):393–404.

    Article  CAS  Google Scholar 

  84. Baracca A, Sgarbi G, Solaini G, Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F-0 during ATP synthesis. Biochim Biophys Acta-Bioenerg. 2003;1606(1–3):137–46.

    Article  CAS  Google Scholar 

  85. Prus E, Fibach E. The effect of iron chelators on the labile iron and oxidative status of thalassemic erythroid cells. Acta Haematol. 2009;123(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  86. Prus E, Fibach E. Heterogeneity of F cells in beta-thalassemia. Transfusion. 2013;53(3):499–504.

    Article  CAS  PubMed  Google Scholar 

  87. Amoyal I, Fibach E. Hemoglobin switch in the newborn: A flow cytometry analysis. Neonatology. 2007;91(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  88. Ghoti H, Fibach E, Dana M, Abu Shaban M, Jeadi H, Braester A, et al. Oxidative stress contributes to hemolysis in patients with hereditary spherocytosis and can be ameliorated by fermented papaya preparation. Ann Hematol. 2010;90(5):509–13.

    Article  PubMed  Google Scholar 

  89. Amer J, Fibach E. Chronic oxidative stress reduces the respiratory burst response of neutrophils from beta-thalassaemia patients. Br J Haematol. 2005;129(3):435–41.

    Article  CAS  PubMed  Google Scholar 

  90. Amoyal I, Fibach E. Flow cytometric analysis of fetal hemoglobin in erythroid precursors of beta-thalassemia. Clin Lab Haematol. 2004;26(3):187–93.

    Article  CAS  PubMed  Google Scholar 

  91. Amer J, Goldfarb A, Rachmilewitz EA, Fibach E. Fermented papaya preparation as redox regulator in blood cells of beta-thalassemic mice and patients. Phytother Res. 2008;22(6):820–8.

    Article  PubMed  Google Scholar 

  92. Prus E, Fibach E. The Antioxidant effect of Fermented Papaya Preparation Involves Iron Chelation. In press. Journal of biological regulators and homeostatic agents. 2012.

  93. Prus E, Fibach E. Effect of iron chelators on labile iron and oxidative status of thalassaemic erythroid cells. Acta Haematol. 2010;123(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  94. Fibach E, Manor D, Oppenheim A, Rachmilewitz EA. Proliferation and maturation of human erythroid progenitors in liquid culture. Blood. 1989;73(1):100–3.

    CAS  PubMed  Google Scholar 

  95. Fibach E. Cell culture and animal models to screen for promising fetal hemoglobin-stimulating compounds. Semin Hematol. 2001;38(4):374–81.

    Article  CAS  PubMed  Google Scholar 

  96. Khemayanto H, Shi BM. Role of Mediterranean diet in prevention and management of type 2 diabetes. Chin Med J. 2014;127(20):3651–6.

    PubMed  Google Scholar 

  97. Hu XT, Wang H, Lv XH, Chu L, Liu ZY, Wei XG, et al. Cardioprotective effects of tannic acid on isoproterenol-induced myocardial injury in rats: further insight into “French Paradox’. Phytother Res. 2015;29(9):1295–303.

    Article  CAS  PubMed  Google Scholar 

  98. Fibach E, Tan ES, Jamuar S, Ng I, Amer J, Rachmilewitz EA. Amelioration of oxidative stress in red blood cells from patients with beta-thalassemia major and intermedia and E-beta-thalassemia following administration of a fermented papaya preparation. Phytother Res. 2010;24(9):1334–8.

    Article  CAS  PubMed  Google Scholar 

  99. Chan AC, Chow CK, Chiu D. Interaction of antioxidants and their implication in genetic anemia. Proc Soc Exp Biol Med. 1999;222(3):274–82.

    Article  CAS  PubMed  Google Scholar 

  100. Hyman CB, Landing B, Alfin-Slater R, Kozak L, Weitzman J, Ortega JA. Dl-alpha-tocopherol, iron, and lipofuscin in thalassemia. Ann N Y Acad Sci. 1974;232:211–20.

    Article  CAS  PubMed  Google Scholar 

  101. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480–7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. De Luca C, Filosa A, Grandinetti M, Maggio F, Lamba M, Passi S. Blood antioxidant status and urinary levels of catecholamine metabolites in beta-thalassemia. Free Radic Res. 1999;30(6):453–62.

    Article  PubMed  Google Scholar 

  103. Horwitt MK, Harvey CC, Duncan GD, Wilson WC. Effects of limited tocopherol intake in man with relationships to erythrocyte hemolysis and lipid oxidations. Am J Clin Nutr. 1956;4(4):408–19.

    Article  CAS  PubMed  Google Scholar 

  104. Horwitt MK. Vitamin E and lipid metabolism in man. Am J Clin Nutr. 1960;8:451–61.

    Article  CAS  PubMed  Google Scholar 

  105. Miniero R, Canducci E, Ghigo D, Saracco P, Vullo C. Vitamin E in beta-thalassemia. Acta Vitaminol Enzymol. 1982;4(1–2):21–5.

    CAS  PubMed  Google Scholar 

  106. Tesoriere L, D’Arpa D, Butera D, Allegra M, Renda D, Maggio A, et al. Oral supplements of vitamin E improve measures of oxidative stress in plasma and reduce oxidative damage to LDL and erythrocytes in beta-thalassemia intermedia patients. Free Radic Res. 2001;34(5):529–40.

    Article  CAS  PubMed  Google Scholar 

  107. Giardini O, Cantani A, Donfrancesco A, Martino F, Mannarino O, D’Eufemia P, et al. Biochemical and clinical effects of vitamin E administration in homozygous beta-thalassemia. Acta Vitaminol Enzymol. 1985;7(1–2):55–60.

    CAS  PubMed  Google Scholar 

  108. Kahane I, Rachmilewitz EA. Alterations in the red blood cell membrane and the effect of vitamin E on osmotic fragility in beta-thalassemia major. Isr J Med Sci. 1976;12(1):11–5.

    CAS  PubMed  Google Scholar 

  109. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    Article  CAS  PubMed  Google Scholar 

  110. Engelhardt JF. Redox-mediated gene therapies for environmental injury: approaches and concepts. Antioxid Redox Signal. 1999;1(1):5–27.

    Article  CAS  PubMed  Google Scholar 

  111. Kaltschmidt B, Sparna T, Kaltschmidt C. Activation of NF-kappa B by reactive oxygen intermediates in the nervous system. Antioxid Redox Signal. 1999;1(2):129–44.

    Article  CAS  PubMed  Google Scholar 

  112. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. Faseb J. 1996;10(7):709–20.

    Article  CAS  PubMed  Google Scholar 

  113. Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med. 2000;28(9):1387–404.

    Article  CAS  PubMed  Google Scholar 

  114. Kim-Shapiro DB, Schechter AN, Gladwin MT. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol. 2006;26(4):697–705.

    Article  CAS  PubMed  Google Scholar 

  115. Mitchinson MJ, Stephens NG, Parsons A, Bligh E, Schofield PM, Brown MJ. Mortality in the CHAOS trial. Lancet. 1999;353(9150):381–2.

    Article  CAS  PubMed  Google Scholar 

  116. Rapola JM, Virtamo J, Ripatti S, Huttunen JK, Albanes D, Taylor PR, et al. Randomised trial of alpha-tocopherol and beta-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet. 1997;349(9067):1715–20.

    Article  CAS  PubMed  Google Scholar 

  117. Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Investig. 2007;117(8):2133–44.

    Article  CAS  PubMed  Google Scholar 

  118. Wang H, Li YM, Wang SF, Zhang Q, Zheng JW, Yang YD, et al. Knockdown of transcription factor forkhead box O3 (FOXO3) suppresses erythroid differentiation in human cells and zebrafish. Biochem Biophys Res Commun. 2015;460(4):923–30.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang X, Camprecios G, Rimmele P, Liang R, Yalcin S, Mungamuri SK, et al. FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. Am J Hematol. 2014;89(10):954–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pecoraro A, Troia A, Calzolari R, Scazzone C, Rigano P, Martorana A, et al. Efficacy of rapamycin as inducer of hb f in primary erythroid cultures from sickle cell disease and beta-thalassemia patients. Hemoglobin. 2015;39(4):225–9.

    Article  CAS  PubMed  Google Scholar 

  121. Franco SS, De Falco L, Ghaffari S, Brugnara C, Sinclair DA, Matte A, et al. Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice. Haematologica. 2014;99(2):267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen JJ. Translational control by heme-regulated eIF2a kinase during erythropoiesis. Curr Opin Hematol. 2014;21(3):172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Suragani R, Zachariah RS, Velazquez JG, Liu SJ, Sun CW, Townes TM, et al. Heme-regulated eIF2 alpha kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood. 2012;119(22):5276–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2 alpha kinases: their structures and functions. Cell Mol Life Sci. 2013;70(19):3493–511.

    Article  CAS  PubMed  Google Scholar 

  125. Han AP, Fleming MD, Chen JJ. Heme-regulated eIF2 alpha kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and beta-thalassemia. J Clin Investig. 2005;115(6):1562–70.

    Article  CAS  PubMed  Google Scholar 

  126. Hahn CK, Lowrey CH. Induction of fetal hemoglobin through enhanced translation efficiency of gamma-globin mRNA. Blood. 2014;124(17):2730–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Matte A, De Falco L, Federti E, Cozzi A, Iolascon A, Levi S, et al. Peroxiredoxin-2: a novel regulator of iron homeostasis in ineffective erythropoiesis. Antioxid Redox Signal. 2018;28(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  128. De Franceschi L, Bertoldi M, De Falco L, Franco SS, Ronzoni L, Turrini F, et al. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in beta-thalassemic erythropoiesis. Haematol Hematol J. 2011;96(11):1595–604.

    Article  CAS  Google Scholar 

  129. Pittala V, Salerno L, Romeo G, Modica MN, Siracusa MA. A Focus on Heme Oxygenase-1 (HO-1) Inhibitors. Curr Med Chem. 2013;20(30):3711–32.

    Article  CAS  PubMed  Google Scholar 

  130. Garcia-Santos D, Mikhael M, Horvathova M, Ponka P. Uncovering the role of heme oxygenase 1 in the pathophysiology of beta-thalassemia. In: 56th annual meeting of the American-Society-of-Hematology, Dec 2014; San Francisco; Blood. 124(21).

  131. Garcia-Santos D, Hamdi A, Saxova Z, Fillebeen C, Pantopoulos K, Horvathova M, et al. Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a beta-thalassemia mouse model. Blood. 2018;131(2):236–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Aizawa S, Harada T, Kanbe E, Tsuboi I, Aisaki K, Fujii H. Ineffective erythropoiesis in mutant mice with deficient pyruvate kinase activity. Exp Hematol. 2005;33(11):1292–8.

    Article  CAS  PubMed  Google Scholar 

  133. Matte A, Beneduce E, Siciliano A, Kosinski P, Janin A, Lebouef C, et al. The Pyruvate Kinase Activator Ag-348 Improves Murine B-Thalassemic Anemia and Corrects Ineffective Erythropoiesis. Haematologica. 2016;101:18-.

    Google Scholar 

  134. Makis A, Hatzimichael E, Papassotiriou I, Voskaridou E. Clinical trials update in new treatments of beta-thalassemia. Am J Hematol. 2017;91(11):1135–45.

    Article  CAS  Google Scholar 

  135. Quek L, Thein SL. Molecular therapies in beta-thalassaemia. Br J Haematol. 2007;136(3):353–65.

    Article  CAS  PubMed  Google Scholar 

  136. Mettananda S, Gibbons RJ, Higgs DR. Understanding alpha-globin gene regulation and implications for the treatment of beta-thalassemia. Cooley’s Anemia. Annal New York Acad Sci, 2016. p. 16-24.

  137. Mettananda S, Fisher CA, Sloane-Stanley JA, Taylor S, Oppermann U, Gibbons RJ, et al. Selective silencing of alpha-globin by the histone demethylase inhibitor IOX1: a potentially new pathway for treatment of beta-thalassemia. Haematologica. 2017;102(3):E80–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gambari R, Fibach E. Medicinal chemistry of fetal hemoglobin inducers for treatment of beta-thalassemia. Curr Med Chem. 2007;14(2):199–212.

    Article  CAS  PubMed  Google Scholar 

  139. Fibach E, Rachmilewitz E. Pathophysiology and treatment of patients with beta-thalassemia—An update. F1000 Faculty Review. 2018, in press.

  140. Smith EC, Orkin SH. Hemoglobin genetics: recent contributions of GWAS and gene editing. Hum Mol Genet. 2016;25(R2):R99–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wilber A, Hargrove PW, Kim YS, Riberdy JM, Sankaran VG, Papanikolaou E, et al. Therapeutic levels of fetal hemoglobin in erythroid progeny of beta-thalassemic CD34(+) cells after lentiviral vector-mediated gene transfer. Blood. 2011;117(10):2817–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Costa FC, Fedosyuk H, Chazelle AM, Neades RY, Peterson KR. Mi2 beta is required for gamma-globin gene silencing: temporal assembly of a GATA-1-FOG-1-Mi2 repressor complex in beta-YAC transgenic mice. Plos Genetics. 2012;8(12). https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1003155&type=printable.

  143. Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U et al. MicroRNA-486-3p regulates gamma-globin expression in human erythroid cells by directly modulating BCL11A. Plos One. 2013;8(4). https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060436.

  144. Guda S, Brendel C, Renella R, Du P, Bauer DE, Canver MC, et al. miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. Mol Ther. 2015;23(9):1465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Breda L, Motta I, Lourenco S, Gemmo C, Deng WL, Rupon JW, et al. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood. 2016;128(8):1139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Deng WL, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell. 2014;158(4):849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fibach E, Prus E, Bianchi N, Zuccato C, Breveglieri G, Salvatori F, et al. Resveratrol: antioxidant activity and induction of fetal hemoglobin in erythroid cells from normal donors and beta-thalassemia patientsV. Int J Mol Med. 2012;29(6):974–82.

    CAS  PubMed  Google Scholar 

  148. Hsiao CH, Li W, Lou TF, Baliga BS, Pace BS. Fetal hemoglobin induction by histone deacetylase inhibitors involves generation of reactive oxygen species. Exp Hematol. 2006;34(3):264–73.

    Article  CAS  PubMed  Google Scholar 

  149. Rombout-Sestrienkova E, van Kraaij MGJ, Koek GH. How we manage patients with hereditary haemochromatosis. Br J Haematol. 2016;175(5):759–70.

    Article  PubMed  Google Scholar 

  150. Leitcha H, Fibach E, Rachmilewitz E. Toxicity of iron overload and iron overload reduction in the setting ofhematopoietic stem cell transplantation for hematologic malignancies. Crit Rev Oncol Hematol. 2017;113:156–70.

    Article  Google Scholar 

  151. Taher A, Origa R, Perrotta S, Kourakli A, Ruffo G, Kattamis A et al. New film-coated tablet formulation of deferasirox is well tolerated in patients with thalassemia or lower-risk MDS: Results of the randomized, phase II ECLIPSE study. Am J Hematol. 2017;Epub ahead of print.

  152. Chuansumrit A, Songdej D, Sirachainan N, Wongwerawattanakoon P, Kadegasem P, Sasanakul W. Safety profile of a liquid formulation of deferiprone in young children with transfusion-induced iron overload: a 1-year experience. Paediatr Int Child Health. 2016;36(3):209–13.

    Article  PubMed  Google Scholar 

  153. Koumoutsea EV, Garbowski M, Porter J. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization. Br J Haematol. 2015;170(6):874–83.

    Article  CAS  Google Scholar 

  154. Preza GC, Ruchala P, Pinon R, Ramos E, Qiao B, Peralta MA, et al. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J Clin Investig. 2011;121(12):4880–8.

    Article  CAS  PubMed  Google Scholar 

  155. Nai A, Pagani A, Mandelli G, Lidonnici MR, Silvestri L, Ferrari G, et al. Deletion of TMPRSS6 attenuates the phenotype in a mouse model of beta-thalassemia. Blood. 2012;119(21):5021–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li H, Rybicki AC, Suzuka SM, von Bonsdorff L, Breuer WV, Hall CB, et al. Transferrin therapy ameliorates disease in beta-thalassemic mice. Nat Med. 2010;16(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  157. Kautz L, Jung G, Du X, Gabayan V, Chapman J, Nasoff M, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of beta-thalassemia. Blood. 2015;126(17):2031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Libani IV, Guy EC, Melchiori L, Schiro R, Ramos P, Breda L, et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood. 2008;112(3):875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Savona MR. Are we altering the natural history of primary myelofibrosis? Leuk Res. 2014;38(9):1004–12.

    Article  PubMed  Google Scholar 

  160. Casu C, Oikonomidou PR, Lo Presti V, Aghajan M, Guo SL, Osheiza A et al. Pote ntial therapeutic applications of jak2 inhibitors and hif2a-aso for the treatment of beta-thalassemia intermedia and major. Am J Hematol. 2017;92(8):E221-E.

  161. Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N Engl J Med. 2018;378(16):1479–93.

    Article  CAS  PubMed  Google Scholar 

  162. Walters RW, Parker R. Coupling of Ribostasis and Proteostasis: Hsp70 Proteins in mRNA Metabolism. Trends Biochem Sci. 2015;40(10):552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ribeil JA, Zermati Y, Vandekerckhove J, Cathelin S, Kersual J, Dussiot M, et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007;445(7123):102–5.

    Article  CAS  PubMed  Google Scholar 

  164. Arlet JB, Ribeil JA, Guil lem F, Negre O, Hazoume A, Marcion G et al. HSP70 sequestration by free alpha-globin promotes ineffective erythropoiesis in beta-thalassaemia. Nature. 2014;514(7521):242- + .

  165. Guillem F, Dussiot M, Causse S, Marcion G, Gautier EF, Rossignol J et al. XPO1 (Exportin-1) is a major regulator of human erythroid differentiation. Potential clinical applications to decrease ineffective erythropoiesis of beta-thalassemia. Blood. 2015;126(23). In: 57th Annual Meeting of the American-Society-of-Hematology, Dec 2015, Orlando, FL.

  166. Bank A. Regulation of human fetal hemoglobin: new players, new complexities. Blood. 2006;107(2):435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eitan Fibach.

Ethics declarations

Conflicts of interest

EF and MD have no conflicts of interest that are directly relevant to the content of this article.

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fibach, E., Dana, M. Oxidative Stress in β-Thalassemia. Mol Diagn Ther 23, 245–261 (2019). https://doi.org/10.1007/s40291-018-0373-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0373-5

Navigation