Skip to main content
Log in

The Role of Pharmacogenomics in Bipolar Disorder: Moving Towards Precision Medicine

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Bipolar disorder (BD) is a common and disabling psychiatric condition with a severe socioeconomic impact. BD is treated with mood stabilizers, among which lithium represents the first-line treatment. Lithium alone or in combination is effective in 60% of chronically treated patients, but response remains heterogenous and a large number of patients require a change in therapy after several weeks or months. Many studies have so far tried to identify molecular and genetic markers that could help us to predict response to mood stabilizers or the risk for adverse drug reactions. Pharmacogenetic studies in BD have been for the most part focused on lithium, but the complexity and variability of the response phenotype, together with the unclear mechanism of action of lithium, limited the power of these studies to identify robust biomarkers. Recent pharmacogenomic studies on lithium response have provided promising findings, suggesting that the integration of genome-wide investigations with deep phenotyping, in silico analyses and machine learning could lead us closer to personalized treatments for BD. Nevertheless, to date none of the genes suggested by pharmacogenetic studies on mood stabilizers have been included in any of the genetic tests approved by the Food and Drug Administration (FDA) for drug efficacy. On the other hand, genetic information has been included in drug labels to test for the safety of carbamazepine and valproate. In this review, we will outline available studies investigating the pharmacogenetics and pharmacogenomics of lithium and other mood stabilizers, with a specific focus on the limitations of these studies and potential strategies to overcome them. We will also discuss FDA-approved pharmacogenetic tests for treatments commonly used in the management of BD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RM, Petukhova M, et al. Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry. 2007;64(5):543–52.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kleine-Budde K, Touil E, Moock J, Bramesfeld A, Kawohl W, Rossler W. Cost of illness for bipolar disorder: a systematic review of the economic burden. Bipolar Disord. 2014;16(4):337–53.

    Article  PubMed  Google Scholar 

  3. Yatham LN, Kennedy SH, Parikh SV, Schaffer A, Beaulieu S, Alda M, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord. 2013;15(1):1–44.

    Article  PubMed  CAS  Google Scholar 

  4. Grof P, Duffy A, Cavazzoni P, Grof E, Garnham J, MacDougall M, et al. Is response to prophylactic lithium a familial trait? J Clin Psychiatry. 2002;63(10):942–7.

    Article  PubMed  CAS  Google Scholar 

  5. Grof P, Alda M, Grof E, Fox D, Cameron P. The challenge of predicting response to stabilising lithium treatment. The importance of patient selection. Br J Psychiatry Suppl. 1993;21:16–9.

    Article  Google Scholar 

  6. Budde M, Degner D, Brockmoller J, Schulze TG. Pharmacogenomic aspects of bipolar disorder: an update. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2017;27(6):599–609.

    Article  CAS  Google Scholar 

  7. Asai T, Bundo M, Sugawara H, Sunaga F, Ueda J, Tanaka G, et al. Effect of mood stabilizers on DNA methylation in human neuroblastoma cells. Int J Neuropsychopharmacol. 2013;16(10):2285–94.

    Article  PubMed  CAS  Google Scholar 

  8. Pisanu C, Katsila T, Patrinos GP, Squassina A. Recent trends on the role of epigenomics, metabolomics and noncoding RNAs in rationalizing mood stabilizing treatment. Pharmacogenomics. 2018;19(2):129–43.

    Article  PubMed  CAS  Google Scholar 

  9. de Bartolomeis A, Tomasetti C, Cicale M, Yuan PX, Manji HK. Chronic treatment with lithium or valproate modulates the expression of Homer1b/c and its related genes Shank and Inositol 1,4,5-trisphosphate receptor. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2012;22(7):527–35.

    Article  CAS  Google Scholar 

  10. Rybakowski JK. Genetic influences on response to mood stabilizers in bipolar disorder: current status of knowledge. CNS Drugs. 2013;27(3):165–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Severino G, Squassina A, Costa M, Pisanu C, Calza S, Alda M, et al. Pharmacogenomics of bipolar disorder. Pharmacogenomics. 2013;14(6):655–74.

    Article  PubMed  CAS  Google Scholar 

  12. Squassina A, Manchia M, Del Zompo M. Pharmacogenomics of mood stabilizers in the treatment of bipolar disorder. Hum Genom Proteom HGP. 2010;2010:159761.

    Google Scholar 

  13. Serretti A, Lilli R, Mandelli L, Lorenzi C, Smeraldi E. Serotonin transporter gene associated with lithium prophylaxis in mood disorders. Pharmacogenom J. 2001;1(1):71–7.

    Article  CAS  Google Scholar 

  14. Bremer T, Diamond C, McKinney R, Shehktman T, Barrett TB, Herold C, et al. The pharmacogenetics of lithium response depends upon clinical co-morbidity. Mol Diagn Ther. 2007;11(3):161–70.

    Article  PubMed  CAS  Google Scholar 

  15. Manchia M, Congiu D, Squassina A, Lampus S, Ardau R, Chillotti C, et al. No association between lithium full responders and the DRD1, DRD2, DRD3, DAT1, 5-HTTLPR and HTR2A genes in a Sardinian sample. Psychiatry Res. 2009;169(2):164–6.

    Article  PubMed  CAS  Google Scholar 

  16. Michelon L, Meira-Lima I, Cordeiro Q, Miguita K, Breen G, Collier D, et al. Association study of the INPP1, 5HTT, BDNF, AP-2beta and GSK-3beta GENE variants and retrospectively scored response to lithium prophylaxis in bipolar disorder. Neurosci Lett. 2006;403(3):288–93.

    Article  PubMed  CAS  Google Scholar 

  17. Serretti A, Lorenzi C, Lilli R, Mandelli L, Pirovano A, Smeraldi E. Pharmacogenetics of lithium prophylaxis in mood disorders: analysis of COMT, MAO-A, and Gbeta3 variants. Am J Med Genet. 2002;114(4):370–9.

    Article  PubMed  Google Scholar 

  18. Serretti A, Malitas PN, Mandelli L, Lorenzi C, Ploia C, Alevizos B, et al. Further evidence for a possible association between serotonin transporter gene and lithium prophylaxis in mood disorders. Pharmacogenom J. 2004;4(4):267–73.

    Article  CAS  Google Scholar 

  19. Rybakowski JK, Suwalska A, Czerski PM, Dmitrzak-Weglarz M, Leszczynska-Rodziewicz A, Hauser J. Prophylactic effect of lithium in bipolar affective illness may be related to serotonin transporter genotype. Pharmacol Rep PR. 2005;57(1):124–7.

    PubMed  CAS  Google Scholar 

  20. Rybakowski JK, Czerski P, Dmitrzak-Weglarz M, Kliwicki S, Leszczynska-Rodziewicz A, Permoda-Osip A, et al. Clinical and pathogenic aspects of candidate genes for lithium prophylactic efficacy. J Psychopharmacol. 2012;26(3):368–73.

    Article  PubMed  CAS  Google Scholar 

  21. Rybakowski JK, Suwalska A, Skibinska M, Dmitrzak-Weglarz M, Leszczynska-Rodziewicz A, Hauser J. Response to lithium prophylaxis: interaction between serotonin transporter and BDNF genes. Am J Med Genet Part B Neuropsychiatr Genet. 2007;144B(6):820–3.

    Article  CAS  Google Scholar 

  22. Tharoor H, Kotambail A, Jain S, Sharma PS, Satyamoorthy K. Study of the association of serotonin transporter triallelic 5-HTTLPR and STin2 VNTR polymorphisms with lithium prophylaxis response in bipolar disorder. Psychiatr Genet. 2013;23(2):77–81.

    Article  PubMed  CAS  Google Scholar 

  23. Serretti A, Lilli R, Lorenzi C, Gasperini M, Smeraldi E. Tryptophan hydroxylase gene and response to lithium prophylaxis in mood disorders. J Psychiatr Res. 1999;33(5):371–7.

    Article  PubMed  CAS  Google Scholar 

  24. Serretti A, Lilli R, Lorenzi C, Franchini L, Di Bella D, Catalano M, et al. Dopamine receptor D2 and D4 genes, GABA(A) alpha-1 subunit genes and response to lithium prophylaxis in mood disorders. Psychiatry Res. 1999;87(1):7–19.

    Article  PubMed  CAS  Google Scholar 

  25. Turecki G, Grof P, Cavazzoni P, Duffy A, Grof E, Ahrens B, et al. MAOA: association and linkage studies with lithium responsive bipolar disorder. Psychiatr Genet. 1999;9(1):13–6.

    Article  PubMed  CAS  Google Scholar 

  26. Serretti A, Lilli R, Lorenzi C, Franchini L, Smeraldi E. Dopamine receptor D3 gene and response to lithium prophylaxis in mood disorders. Int J Neuropsychopharmacol. 1998;1(2):125–9.

    Article  PubMed  Google Scholar 

  27. Rybakowski JK, Dmitrzak-Weglarz M, Suwalska A, Leszczynska-Rodziewicz A, Hauser J. Dopamine D1 receptor gene polymorphism is associated with prophylactic lithium response in bipolar disorder. Pharmacopsychiatry. 2009;42(1):20–2.

    Article  PubMed  CAS  Google Scholar 

  28. Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A, Skibinska M, Leszczynska-Rodziewicz A, Szczepankiewicz A, et al. Association studies of the BDNF and the NTRK2 gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacogenomics. 2008;9(11):1595–603.

    Article  PubMed  CAS  Google Scholar 

  29. Wang Z, Li Z, Chen J, Huang J, Yuan C, Hong W, et al. Association of BDNF gene polymorphism with bipolar disorders in Han Chinese population. Genes Brain Behav. 2012;11(5):524–8.

    Article  PubMed  CAS  Google Scholar 

  30. Pae CU, Chiesa A, Porcelli S, Han C, Patkar AA, Lee SJ, et al. Influence of BDNF variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Neuropsychobiology. 2012;65(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  31. Allison JH, Stewart MA. Reduced brain inositol in lithium-treated rats. Nat New Biol. 1971;233(43):267–8.

    Article  PubMed  CAS  Google Scholar 

  32. Berridge MJ, Downes CP, Hanley MR. Neural and developmental actions of lithium: a unifying hypothesis. Cell. 1989;59(3):411–9.

    Article  PubMed  CAS  Google Scholar 

  33. Dimitrova A, Milanova V, Krastev S, Nikolov I, Toncheva D, Owen MJ, et al. Association study of myo-inositol monophosphatase 2 (IMPA2) polymorphisms with bipolar affective disorder and response to lithium treatment. Pharmacogenom J. 2005;5(1):35–41.

    Article  CAS  Google Scholar 

  34. Steen VM, Lovlie R, Osher Y, Belmaker RH, Berle JO, Gulbrandsen AK. The polymorphic inositol polyphosphate 1-phosphatase gene as a candidate for pharmacogenetic prediction of lithium-responsive manic-depressive illness. Pharmacogenetics. 1998;8(3):259–68.

    PubMed  CAS  Google Scholar 

  35. Szczepankiewicz A, Rybakowski JK, Suwalska A, Skibinska M, Leszczynska-Rodziewicz A, Dmitrzak-Weglarz M, et al. Association study of the glycogen synthase kinase-3beta gene polymorphism with prophylactic lithium response in bipolar patients. World J Biol Psychiatry. 2006;7(3):158–61.

    Article  PubMed  Google Scholar 

  36. Squassina A, Congiu D, Manconi F, Manchia M, Chillotti C, Lampus S, et al. The PDLIM5 gene and lithium prophylaxis: an association and gene expression analysis in Sardinian patients with bipolar disorder. Pharmacol Res. 2008;57(5):369–73.

    Article  PubMed  CAS  Google Scholar 

  37. Mamdani F, Alda M, Grof P, Young LT, Rouleau G, Turecki G. Lithium response and genetic variation in the CREB family of genes. Am J Med Genet Part B Neuropsychiatr Genet. 2008;147B(4):500–4.

    Article  CAS  Google Scholar 

  38. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004;119(7):1041–54.

    PubMed  CAS  Google Scholar 

  39. Boer U, Eglins J, Krause D, Schnell S, Schofl C, Knepel W. Enhancement by lithium of cAMP-induced CRE/CREB-directed gene transcription conferred by TORC on the CREB basic leucine zipper domain. Biochem J. 2007;408(1):69–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Masui T, Hashimoto R, Kusumi I, Suzuki K, Tanaka T, Nakagawa S, et al. A possible association between the -116C/G single nucleotide polymorphism of the XBP1 gene and lithium prophylaxis in bipolar disorder. Int J Neuropsychopharmacol. 2006;9(1):83–8.

    Article  PubMed  CAS  Google Scholar 

  41. Kakiuchi C, Kato T. Lithium response and -116C/G polymorphism of XBP1 in Japanese patients with bipolar disorder. Int J Neuropsychopharmacol. 2005;8(4):631–2.

    Article  PubMed  CAS  Google Scholar 

  42. Perlis RH, Smoller JW, Ferreira MA, McQuillin A, Bass N, Lawrence J, et al. A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. Am J Psychiatry. 2009;166(6):718–25.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Squassina A, Manchia M, Borg J, Congiu D, Costa M, Georgitsi M, et al. Evidence for association of an ACCN1 gene variant with response to lithium treatment in Sardinian patients with bipolar disorder. Pharmacogenomics. 2011;12(11):1559–69.

    Article  PubMed  CAS  Google Scholar 

  44. Manchia M, Adli M, Akula N, Ardau R, Aubry JM, Backlund L, et al. Assessment of response to lithium maintenance treatment in bipolar disorder: a Consortium on Lithium Genetics (ConLiGen) report. PLoS One. 2013;8(6):e65636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chen CH, Lee CS, Lee MT, Ouyang WC, Chen CC, Chong MY, et al. Variant GADL1 and response to lithium therapy in bipolar I disorder. N Engl J Med. 2014;370(2):119–28.

    Article  PubMed  CAS  Google Scholar 

  46. Consortium on Lithium G, Hou L, Heilbronner U, Rietschel M, Kato T, Kuo PH, et al. Variant GADL1 and response to lithium in bipolar I disorder. N Engl J Med. 2014;370(19):1857–9.

    Google Scholar 

  47. Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet. 2016;387(10023):1085–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Maranville JC, Cox NJ. Pharmacogenomic variants have larger effect sizes than genetic variants associated with other dichotomous complex traits. Pharmacogenom J. 2016;16(4):388–92.

    Article  CAS  Google Scholar 

  49. Zhou K, Pearson ER. Insights from genome-wide association studies of drug response. Annu Rev Pharmacol Toxicol. 2013;53:299–310.

    Article  PubMed  CAS  Google Scholar 

  50. Ioannidis JP. Why most published research findings are false. PLoS Med. 2005;2(8):e124.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Maxwell SE, Lau MY, Howard GS. Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? Am Psychol. 2015;70(6):487–98.

    Article  PubMed  Google Scholar 

  52. Higgins GA, Allyn-Feuer A, Barbour E, Athey BD. A glutamatergic network mediates lithium response in bipolar disorder as defined by epigenome pathway analysis. Pharmacogenomics. 2015;16(14):1547–63.

    Article  PubMed  CAS  Google Scholar 

  53. Hunsberger JG, Chibane FL, Elkahloun AG, Henderson R, Singh R, Lawson J, et al. Novel integrative genomic tool for interrogating lithium response in bipolar disorder. Transl Psychiatry. 2015;5:e504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Squassina A, Costa M, Congiu D, Manchia M, Angius A, Deiana V, et al. Insulin-like growth factor 1 (IGF-1) expression is up-regulated in lymphoblastoid cell lines of lithium responsive bipolar disorder patients. Pharmacol Res. 2013;73:1–7.

    Article  PubMed  CAS  Google Scholar 

  55. Milanesi E, Hadar A, Maffioletti E, Werner H, Shomron N, Gennarelli M, et al. Insulin-like growth factor 1 differentially affects lithium sensitivity of lymphoblastoid cell lines from lithium responder and non-responder bipolar disorder patients. J Mol Neurosci MN. 2015;56(3):681–7.

    Article  PubMed  CAS  Google Scholar 

  56. Jack J, Rotroff D, Motsinger-Reif A. Lymphoblastoid cell lines models of drug response: successes and lessons from this pharmacogenomic model. Curr Mol Med. 2014;14(7):833–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chen H, Wang N, Burmeister M, McInnis MG. MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol. 2009;12(7):975–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Milanesi E, Voinsky I, Hadar A, Srouji A, Maj C, Shekhtman T, et al. RNA sequencing of bipolar disorder lymphoblastoid cell lines implicates the neurotrophic factor HRP-3 in lithium’s clinical efficacy. World J Biol Psychiatry. 2017;22:1–13.

    Google Scholar 

  59. Sugawara H, Iwamoto K, Bundo M, Ishiwata M, Ueda J, Kakiuchi C, et al. Effect of mood stabilizers on gene expression in lymphoblastoid cells. J Neural Transm. 2010;117(2):155–64.

    Article  PubMed  CAS  Google Scholar 

  60. Breen MS, White CH, Shekhtman T, Lin K, Looney D, Woelk CH, et al. Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines. Pharmacogenom J. 2016;16(5):446–53.

    Article  CAS  Google Scholar 

  61. Geoffroy PA, Curis E, Courtin C, Moreira J, Morvillers T, Etain B, et al. Lithium response in bipolar disorders and core clock genes expression. World J Biol Psychiatry. 2017;28:1–14.

    Article  Google Scholar 

  62. Papadima EM, Niola P, Melis C, Pisanu C, Congiu D, Cruceanu C, et al. Evidence towards RNA binding motif (RNP1, RRM) protein 3 (RBM3) as a potential biomarker of lithium response in bipolar disorder patients. J Mol Neurosci MN. 2017;62(3–4):304–8.

    Article  PubMed  CAS  Google Scholar 

  63. Viswanath B, Jose SP, Squassina A, Thirthalli J, Purushottam M, Mukherjee O, et al. Cellular models to study bipolar disorder: a systematic review. J Affect Disord. 2015;184:36–50.

    Article  PubMed  Google Scholar 

  64. Stern S, Santos R, Marchetto MC, Mendes AP, Rouleau GA, Biesmans S, et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry. 2017. doi:https://doi.org/10.1038/mp.2016.260.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci USA. 2017;114(22):E4462–71.

    Article  PubMed  CAS  Google Scholar 

  66. Grof P. Sixty years of lithium responders. Neuropsychobiology. 2010;62(1):8–16.

    Article  PubMed  CAS  Google Scholar 

  67. Etain B, Lajnef M, Brichant-Petitjean C, Geoffroy PA, Henry C, Gard S, et al. Childhood trauma and mixed episodes are associated with poor response to lithium in bipolar disorders. Acta Psychiatr Scand. 2017;135(4):319–27.

    Article  PubMed  CAS  Google Scholar 

  68. Scott J, Geoffroy PA, Sportiche S, Brichant-Petit-Jean C, Gard S, Kahn JP, et al. Cross-validation of clinical characteristics and treatment patterns associated with phenotypes for lithium response defined by the Alda scale. J Affect Disord. 2017;208:62–7.

    Article  PubMed  Google Scholar 

  69. Sportiche S, Geoffroy PA, Brichant-Petitjean C, Gard S, Khan JP, Azorin JM, et al. Clinical factors associated with lithium response in bipolar disorders. Aust N Z J Psychiatry. 2017;51(5):524–30.

    Article  PubMed  Google Scholar 

  70. Potkin SG, Turner JA, Guffanti G, Lakatos A, Torri F, Keator DB, et al. Genome-wide strategies for discovering genetic influences on cognition and cognitive disorders: methodological considerations. Cognit Neuropsychiatry. 2009;14(4–5):391–418.

    Article  Google Scholar 

  71. Zondervan KT. Genetic association study design. In: Zeggini E, Morris A, editors. Analysis of complex disease association studies: a practical guide; 2011. Academic Press, London. ISBN: 978-0-12-375142-3.

  72. Song J, Bergen SE, Di Florio A, Karlsson R, Charney A, Ruderfer DM, et al. Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder. Mol Psychiatry. 2016;21(9):1290–7.

    Article  PubMed  CAS  Google Scholar 

  73. Song J, Bergen SE, Di Florio A, Karlsson R, Charney A, Ruderfer DM, Stahl EA, Chambert KD, Moran JL, Gordon-Smith K, Forty L, Green EK, Jones I, Jones L, Scolnick EM, Sklar P, Smoller JW, Lichtenstein P, Hultman C, Craddock N, Landén M. Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder. Mol Psychiatry. 2017;22(8):1223.

    Article  PubMed  CAS  Google Scholar 

  74. Alda M. The phenotypic spectra of bipolar disorder. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2004;14(Suppl 2):S94–9.

    Article  CAS  Google Scholar 

  75. Kelsoe JR. Arguments for the genetic basis of the bipolar spectrum. J Affect Disord. 2003;73(1–2):183–97.

    Article  PubMed  Google Scholar 

  76. McMahon FJ, Insel TR. Pharmacogenomics and personalized medicine in neuropsychiatry. Neuron. 2012;74(5):773–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. International Consortium on Lithium G, Amare AT, Schubert KO, Hou L, Clark SR, Papiol S, et al. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: a genome-wide association study. JAMA psychiatry. 2018;75(1):65–74.

    Google Scholar 

  78. Perlis RH, Adams DH, Fijal B, Sutton VK, Farmen M, Breier A, et al. Genetic association study of treatment response with olanzapine/fluoxetine combination or lamotrigine in bipolar I depression. J Clin Psychiatry. 2010;71(5):599–605.

    Article  PubMed  CAS  Google Scholar 

  79. Kim B, Kim CY, Lee MJ, Joo YH. Preliminary evidence on the association between XBP1-116C/G polymorphism and response to prophylactic treatment with valproate in bipolar disorders. Psychiatry Res. 2009;168(3):209–12.

    Article  PubMed  CAS  Google Scholar 

  80. Lee HY, Kim YK. Catechol-O-methyltransferase Val158Met polymorphism affects therapeutic response to mood stabilizer in symptomatic manic patients. Psychiatry Res. 2010;175(1–2):63–6.

    Article  PubMed  CAS  Google Scholar 

  81. Wang Z, Fan J, Gao K, Li Z, Yi Z, Wang L, et al. Neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene associated with treatment response to mood stabilizers in patients with bipolar I disorder. J Mol Neurosci MN. 2013;50(2):305–10.

    Article  PubMed  CAS  Google Scholar 

  82. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Cohen BH, Chinnery PF, Copeland WC. POLG-related disorders. Seattle: University of Washington; 2010.

    Google Scholar 

  84. Li S, Guo J, Ying Z, Chen S, Yang L, Chen K, et al. Valproic acid-induced hepatotoxicity in Alpers syndrome is associated with mitochondrial permeability transition pore opening-dependent apoptotic sensitivity in an induced pluripotent stem cell model. Hepatology. 2015;61(5):1730–9.

    Article  PubMed  CAS  Google Scholar 

  85. Pisanu C, Papadima EM, Del Zompo M, Squassina A. Understanding the molecular mechanisms underlying mood stabilizer treatments in bipolar disorder: potential involvement of epigenetics. Neurosci Lett. 2018;669:24–31.

    Article  PubMed  CAS  Google Scholar 

  86. Alda M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry. 2015;20(6):661–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Duffy A, Turecki G, Grof P, Cavazzoni P, Grof E, Joober R, et al. Association and linkage studies of candidate genes involved in GABAergic neurotransmission in lithium-responsive bipolar disorder. J Psychiatry Neurosci JPN. 2000;25(4):353–8.

    PubMed  CAS  Google Scholar 

  88. Mitjans M, Arias B, Jimenez E, Goikolea JM, Saiz PA, Garcia-Portilla MP, et al. Exploring genetic variability at PI, GSK3, HPA, and glutamatergic pathways in lithium response: association with IMPA2, INPP1, and GSK3B genes. J Clin Psychopharmacol. 2015;35(5):600–4.

    Article  PubMed  CAS  Google Scholar 

  89. Chiesa A, Crisafulli C, Porcelli S, Han C, Patkar AA, Lee SJ, et al. Influence of GRIA1, GRIA2 and GRIA4 polymorphisms on diagnosis and response to treatment in patients with major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2012;262(4):305–11.

    Article  PubMed  Google Scholar 

  90. Szczepankiewicz A, Skibinska M, Suwalska A, Hauser J, Rybakowski JK. No association of three GRIN2B polymorphisms with lithium response in bipolar patients. Pharmacol Rep PR. 2009;61(3):448–52.

    Article  PubMed  CAS  Google Scholar 

  91. Serretti A, Lorenzi C, Lilli R, Smeraldi E. Serotonin receptor 2A, 2C, 1A genes and response to lithium prophylaxis in mood disorders. J Psychiatr Res. 2000;34(2):89–98.

    Article  PubMed  CAS  Google Scholar 

  92. Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A, Slopien A, Czerski PM, Leszczynska-Rodziewicz A, et al. Association studies of 5-HT2A and 5-HT2C serotonin receptor gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacol Rep PR. 2005;57(6):761–5.

    PubMed  CAS  Google Scholar 

  93. Cavazzoni P, Alda M, Turecki G, Rouleau G, Grof E, Martin R, et al. Lithium-responsive affective disorders: no association with the tyrosine hydroxylase gene. Psychiatry Res. 1996;64(2):91–6.

    Article  PubMed  CAS  Google Scholar 

  94. Serretti A, Chiesa A, Porcelli S, Han C, Patkar AA, Lee SJ, et al. Influence of TPH2 variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Psychiatry Res. 2011;189(1):26–32.

    Article  PubMed  CAS  Google Scholar 

  95. Rybakowski JK, Suwalska A, Skibinska M, Szczepankiewicz A, Leszczynska-Rodziewicz A, Permoda A, et al. Prophylactic lithium response and polymorphism of the brain-derived neurotrophic factor gene. Pharmacopsychiatry. 2005;38(4):166–70.

    Article  PubMed  CAS  Google Scholar 

  96. Drago A, Serretti A, Smith R, Huezo-Diaz P, Malitas P, Albani D, et al. No association between genetic markers in BDNF gene and lithium prophylaxis in a Greek sample. Int J Psychiatry Clin Pract. 2010;14(2):154–7.

    Article  PubMed  CAS  Google Scholar 

  97. Sjoholt G, Ebstein RP, Lie RT, Berle JO, Mallet J, Deleuze JF, et al. Examination of IMPA1 and IMPA2 genes in manic-depressive patients: association between IMPA2 promoter polymorphisms and bipolar disorder. Mol Psychiatry. 2004;9(6):621–9.

    Article  PubMed  CAS  Google Scholar 

  98. Turecki G, Grof P, Cavazzoni P, Duffy A, Grof E, Ahrens B, et al. Evidence for a role of phospholipase C-gamma1 in the pathogenesis of bipolar disorder. Mol Psychiatry. 1998;3(6):534–8.

    Article  PubMed  CAS  Google Scholar 

  99. Lovlie R, Berle JO, Stordal E, Steen VM. The phospholipase C-gamma1 gene (PLCG1) and lithium-responsive bipolar disorder: re-examination of an intronic dinucleotide repeat polymorphism. Psychiatr Genet. 2001;11(1):41–3.

    Article  PubMed  CAS  Google Scholar 

  100. Ftouhi-Paquin N, Alda M, Grof P, Chretien N, Rouleau G, Turecki G. Identification of three polymorphisms in the translated region of PLC-gamma1 and their investigation in lithium responsive bipolar disorder. Am J Med Genet. 2001;105(3):301–5.

    Article  PubMed  CAS  Google Scholar 

  101. Squassina A, Manchia M, Congiu D, Severino G, Chillotti C, Ardau R, et al. The diacylglycerol kinase eta gene and bipolar disorder: a replication study in a Sardinian sample. Mol Psychiatry. 2009;14(4):350–1.

    Article  PubMed  CAS  Google Scholar 

  102. Manchia M, Squassina A, Congiu D, Chillotti C, Ardau R, Severino G, et al. Interacting genes in lithium prophylaxis: preliminary results of an exploratory analysis on the role of DGKH and NR1D1 gene polymorphisms in 199 Sardinian bipolar patients. Neurosci Lett. 2009;467(2):67–71.

    Article  PubMed  CAS  Google Scholar 

  103. Masui T, Hashimoto R, Kusumi I, Suzuki K, Tanaka T, Nakagawa S, et al. Lithium response and Val66Met polymorphism of the brain-derived neurotrophic factor gene in Japanese patients with bipolar disorder. Psychiatr Genet. 2006;16(2):49–50.

    Article  PubMed  Google Scholar 

  104. McCarthy MJ, Nievergelt CM, Shekhtman T, Kripke DF, Welsh DK, Kelsoe JR. Functional genetic variation in the Rev-Erbalpha pathway and lithium response in the treatment of bipolar disorder. Genes Brain Behav. 2011;10(8):852–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Rybakowski JK, Dmitrzak-Weglar M, Kliwicki S, Hauser J. Polymorphism of circadian clock genes and prophylactic lithium response. Bipolar Disord. 2014;16(2):151–8.

    Article  PubMed  CAS  Google Scholar 

  106. Benedetti F, Serretti A, Pontiggia A, Bernasconi A, Lorenzi C, Colombo C, et al. Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta -50 T/C SNP. Neurosci Lett. 2005;376(1):51–5.

    Article  PubMed  CAS  Google Scholar 

  107. Lin YF, Huang MC, Liu HC. Glycogen synthase kinase 3beta gene polymorphisms may be associated with bipolar I disorder and the therapeutic response to lithium. J Affect Disord. 2013;147(1–3):401–6.

    Article  PubMed  CAS  Google Scholar 

  108. Iwahashi K, Nishizawa D, Narita S, Numajiri M, Murayama O, Yoshihara E, et al. Haplotype analysis of GSK-3beta gene polymorphisms in bipolar disorder lithium responders and nonresponders. Clin Neuropharmacol. 2014;37(4):108–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Campos-de-Sousa S, Guindalini C, Tondo L, Munro J, Osborne S, Floris G, et al. Nuclear receptor rev-erb-{alpha} circadian gene variants and lithium carbonate prophylaxis in bipolar affective disorder. J Biol Rhythms. 2010;25(2):132–7.

    Article  PubMed  CAS  Google Scholar 

  110. Szczepankiewicz A, Leszczynska-Rodziewicz A, Pawlak J, Rajewska-Rager A, Dmitrzak-Weglarz M, Wilkosc M, et al. Glucocorticoid receptor polymorphism is associated with major depression and predominance of depression in the course of bipolar disorder. J Affect Disord. 2011;134(1–3):138–44.

    Article  PubMed  CAS  Google Scholar 

  111. Pisanu C, Congiu D, Costa M, Sestu M, Chillotti C, Ardau R, et al. No association of endocannabinoid genes with bipolar disorder or lithium response in a Sardinian sample. Psychiatry Res. 2013;210(3):887–90.

    Article  PubMed  CAS  Google Scholar 

  112. Cruceanu C, Alda M, Turecki G. Lithium: a key to the genetics of bipolar disorder. Genome Med. 2009;1(8):79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Rybakowski JK, Skibinska M, Suwalska A, Leszczynska-Rodziewicz A, Kaczmarek L, Hauser J. Functional polymorphism of matrix metalloproteinase-9 (MMP-9) gene and response to lithium prophylaxis in bipolar patients. Hum Psychopharmacol. 2011;26(2):168–71.

    Article  PubMed  CAS  Google Scholar 

  114. Mamdani F, Sequeira A, Alda M, Grof P, Rouleau G, Turecki G. No association between the PREP gene and lithium responsive bipolar disorder. BMC Psychiatry. 2007;7:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Squassina.

Ethics declarations

Conflict of interest

CP, UH and AS declare they have no conflict of interest.

Funding

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisanu, C., Heilbronner, U. & Squassina, A. The Role of Pharmacogenomics in Bipolar Disorder: Moving Towards Precision Medicine. Mol Diagn Ther 22, 409–420 (2018). https://doi.org/10.1007/s40291-018-0335-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0335-y

Navigation