Skip to main content

Advertisement

Log in

Effect of mood stabilizers on gene expression in lymphoblastoid cells

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Lithium and valproate are widely used as effective mood stabilizers for the treatment of bipolar disorder. To elucidate the common molecular effect of these drugs on non-neuronal cells, we studied the gene expression changes induced by these drugs. Lymphoblastoid cell cultures derived from lymphocytes harvested from three healthy subjects were incubated in medium containing therapeutic concentrations of lithium (0.75 mM) or valproate (100 μg ml−1) for 7 days. Gene expression profiling was performed using an Affymetrix HGU95Av2 array containing approximately 12,000 probe sets. We identified 44 and 416 genes that were regulated by lithium and valproate, respectively. Most of the genes were not commonly affected by the two drugs. Among the 18 genes commonly altered by both drugs, vascular endothelial growth factor A (VEGFA), which is one of the VEGF gene isoforms, showed the largest downregulation. Our findings indicate that these two structurally dissimilar mood stabilizers, lithium, and valproate, alter VEGFA expression. VEGFA might be a useful biomarker of their effects on peripheral tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altar CA, Laeng P, Jurata LW, Brockman JA, Lemire A, Bullard J, Bukhman YV, Young TA, Charles V, Palfreyman MG (2004) Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 24:2667–2677

    Article  PubMed  CAS  Google Scholar 

  • Assadi AH, Zhang G, Beffert U, McNeil RS, Renfro AL, Niu S, Quattrocchi CC, Antalffy BA, Sheldon M, Armstrong DD, Wynshaw-Boris A, Herz J, D’Arcangelo G, Clark GD (2003) Interaction of reelin signaling and Lis1 in brain development. Nat Genet 35:270–276

    Article  PubMed  CAS  Google Scholar 

  • Assadi AH, Zhang G, McNeil R, Clark GD, D’Arcangelo G (2008) Pafah1b2 mutations suppress the development of hydrocephalus in compound Pafah1b1; Reln and Pafah1b1; Dab1 mutant mice. Neurosci Lett 439:100–105

    Article  PubMed  CAS  Google Scholar 

  • Basta-Kaim A, Budziszewska B, Jaworska-Feil L, Tetich M, Kubera M, Leskiewicz M, Lason W (2004) Mood stabilizers inhibit glucocorticoid receptor function in LMCAT cells. Eur J Pharmacol 495:103–110

    Article  PubMed  CAS  Google Scholar 

  • Belmaker RH, Shapiro J, Vainer E, Nemanov L, Ebstein RP, Agam G (2002) Reduced inositol content in lymphocyte-derived cell lines from bipolar patients. Bipolar Disord 4:67–69

    Article  PubMed  CAS  Google Scholar 

  • Bosetti F, Bell JM, Manickam P (2005) Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res Bull 65:331–338

    Article  PubMed  CAS  Google Scholar 

  • Chen RW, Chuang DM (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 274:6039–6042

    CAS  Google Scholar 

  • Chen B, Wang JF, Hill BC, Young LT (1999a) Lithium and valproate differentially regulate brain regional expression of phosphorylated CREB and c-Fos. Brain Res Mol Brain Res 70:45–53

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Huang LD, Jiang YM, Manji HK (1999b) The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J Neurochem 72:1327–1330

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH, Manji HK (1999c) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 72:879–882

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK (2000) Enhancement of hippocampal neurogenesis by lithium. J Neurochem 75:1729–1734

    Article  PubMed  CAS  Google Scholar 

  • Chetcuti A, Adams LJ, Mitchell PB, Schofield PR (2006) Altered gene expression in mice treated with the mood stabilizer sodium valproate. Int J Neuropsychopharmacol 9:267–276

    Article  PubMed  CAS  Google Scholar 

  • Choy E, Yelensky R, Bonakdar S, Plenge RM, Saxena R, De Jager PL, Shaw SY, Wolfish CS, Slavik JM, Cotsapas C, Rivas M, Dermitzakis ET, Cahir-McFarland E, Kieff E, Hafler D, Daly MJ, Altshuler D (2008) Genetic analysis of human traits in vitro: drug response and gene expression in lymphoblastoid cell lines. PLoS Genet 4:e1000287

    Article  PubMed  CAS  Google Scholar 

  • Cui J, Shao L, Young LT, Wang JF (2007) Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 144:1447–1453

    Article  PubMed  CAS  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Dome P, Teleki Z, Rihmer Z, Peter L, Dobos J, Kenessey I, Tovari J, Timar J, Paku S, Kovacs G, Dome B (2009) Circulating endothelial progenitor cells and depression: a possible novel link between heart and soul. Mol Psychiatry 14(5):523–531

    Google Scholar 

  • Du J, Gray NA, Falke C, Yuan P, Szabo S, Manji HK (2003) Structurally dissimilar antimanic agents modulate synaptic plasticity by regulating AMPA glutamate receptor subunit GluR1 synaptic expression. Ann N Y Acad Sci 1003:378–380

    Article  PubMed  CAS  Google Scholar 

  • Emamghoreishi M, Schlichter L, Li PP, Parikh S, Sen J, Kamble A, Warsh JJ (1997) High intracellular calcium concentrations in transformed lymphoblasts from subjects with bipolar I disorder. Am J Psychiatry 154:976–982

    PubMed  CAS  Google Scholar 

  • Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29:10–14

    PubMed  CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Xia Q, Lv J, Zhang H (2007) Chronic administration of valproic acid inhibits PC3 cell growth by suppressing tumor angiogenesis in vivo. Int J Urol 14:838–845

    Article  PubMed  CAS  Google Scholar 

  • Geddes JR, Burgess S, Hawton K, Jamison K, Goodwin GM (2004) Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomized controlled trials. Am J Psychiatry 161:217–222

    Article  PubMed  Google Scholar 

  • Ghribi O, Herman MM, Spaulding NK, Savory J (2002) Lithium inhibits aluminum-induced apoptosis in rabbit hippocampus, by preventing cytochrome c translocation, Bcl-2 decrease, Bax elevation and caspase-3 activation. J Neurochem 82:137–145

    Article  PubMed  CAS  Google Scholar 

  • Gilad GM, Gilad VH (2007) Astroglia growth retardation and increased microglia proliferation by lithium and ornithine decarboxylase inhibitor in rat cerebellar cultures: cytotoxicity by combined lithium and polyamine inhibition. J Neurosci Res 85:594–601

    Article  PubMed  CAS  Google Scholar 

  • Gora-Kupilas K, Josko J (2005) The neuroprotective function of vascular endothelial growth factor (VEGF). Folia Neuropathol 43:31–39

    PubMed  CAS  Google Scholar 

  • Graham SH, Chen J, Clark RS (2000) Bcl-2 family gene products in cerebral ischemia and traumatic brain injury. J Neurotrauma 17:831–841

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Arai K, Stins MF, Chuang DM, Lo EH (2009) Lithium upregulates vascular endothelial growth factor in brain endothelial cells and astrocytes. Stroke 40:652–655

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24:6590–6599

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Arai H, Inoue K (1993) Purification and characterization of bovine brain platelet-activating factor acetylhydrolase. J Biol Chem 268:18748–18753

    PubMed  CAS  Google Scholar 

  • Hayashi A, Kasahara T, Kametani M, Toyota T, Yoshikawa T, Kato T (2009) Aberrant endoplasmic reticulum stress response in lymphoblastoid cells from patients with bipolar disorder. Int J Neuropsychopharmacol 12:33–43

    Article  PubMed  CAS  Google Scholar 

  • Higashi M, Maruta N, Bernstein A, Ikenaka K, Hitoshi S (2008) Mood stabilizing drugs expand the neural stem cell pool in the adult brain through activation of notch signaling. Stem Cells 26:1758–1767

    Article  PubMed  CAS  Google Scholar 

  • Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19:333–339

    Article  PubMed  CAS  Google Scholar 

  • Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  PubMed  CAS  Google Scholar 

  • Iga J, Ueno S, Yamauchi K, Numata S, Tayoshi-Shibuya S, Kinouchi S, Nakataki M, Song H, Hokoishi K, Tanabe H, Sano A, Ohmori T (2007) Gene expression and association analysis of vascular endothelial growth factor in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 31:658–663

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T (2004) Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry 9:406–416

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99:11946–11950

    Article  PubMed  CAS  Google Scholar 

  • Kaga S, Zhan L, Altaf E, Maulik N (2006) Glycogen synthase kinase-3beta/beta-catenin promotes angiogenic and anti-apoptotic signaling through the induction of VEGF, Bcl-2 and survivin expression in rat ischemic preconditioned myocardium. J Mol Cell Cardiol 40:138–147

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I, Tsujita T, Okazaki Y, Nanko S, Kunugi H, Sasaki T, Kato T (2003) Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 35:171–175

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi C, Ishiwata M, Nanko S, Ozaki N, Iwata N, Umekage T, Tochigi M, Kohda K, Sasaki T, Imamura A, Okazaki Y, Kato T (2008) Up-regulation of ADM and SEPX1 in the lymphoblastoid cells of patients in monozygotic twins discordant for schizophrenia. Am J Med Genet B Neuropsychiatr Genet 147B:557–564

    Article  PubMed  CAS  Google Scholar 

  • Kato T (2007) Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 61:3–19

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Ishiwata M, Mori K, Washizuka S, Tajima O, Akiyama T, Kato N (2003) Mechanisms of altered Ca2+ signalling in transformed lymphoblastoid cells from patients with bipolar disorder. Int J Neuropsychopharmacol 6:379–389

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Cho JJ, Ha J, Park JH (2002) The carboxy terminal C-tail of BNip3 is crucial in induction of mitochondrial permeability transition in isolated mitochondria. Arch Biochem Biophys 398:147–152

    Article  PubMed  CAS  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93:8455–8459

    Article  PubMed  CAS  Google Scholar 

  • Leng Y, Liang MH, Ren M, Marinova Z, Leeds P, Chuang DM (2008) Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci 28:2576–2588

    Article  PubMed  CAS  Google Scholar 

  • Matigian NA, McCurdy RD, Feron F, Perry C, Smith H, Filippich C, McLean D, McGrath J, Mackay-Sim A, Mowry B, Hayward NK (2008) Fibroblast and lymphoblast gene expression profiles in schizophrenia: are non-neural cells informative? PLoS One 3:e2412

    Article  PubMed  CAS  Google Scholar 

  • Michaelis M, Suhan T, Michaelis UR, Beek K, Rothweiler F, Tausch L, Werz O, Eikel D, Zornig M, Nau H, Fleming I, Doerr HW, Cinatl J Jr (2006) Valproic acid induces extracellular signal-regulated kinase 1/2 activation and inhibits apoptosis in endothelial cells. Cell Death Differ 13:446–453

    Article  PubMed  CAS  Google Scholar 

  • Nakatani N, Hattori E, Ohnishi T, Dean B, Iwayama Y, Matsumoto I, Kato T, Osumi N, Higuchi T, Niwa S, Yoshikawa T (2006) Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet 15:1949–1962

    Article  PubMed  CAS  Google Scholar 

  • Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E, Duman RS (2003) Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J Neurosci 23:10841–10851

    PubMed  CAS  Google Scholar 

  • Nonaka S, Hough CJ, Chuang DM (1998) Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-d-aspartate receptor-mediated calcium influx. Proc Natl Acad Sci USA 95:2642–2647

    Article  PubMed  CAS  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  PubMed  CAS  Google Scholar 

  • Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M (2007) Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956

    Article  PubMed  Google Scholar 

  • Schanzer A, Wachs FP, Wilhelm D, Acker T, Cooper-Kuhn C, Beck H, Winkler J, Aigner L, Plate KH, Kuhn HG (2004) Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol 14:237–248

    Article  PubMed  Google Scholar 

  • Seelan RS, Khalyfa A, Lakshmanan J, Casanova MF, Parthasarathy RN (2008) Deciphering the lithium transcriptome: microarray profiling of lithium-modulated gene expression in human neuronal cells. Neuroscience 151:1184–1197

    Article  PubMed  CAS  Google Scholar 

  • Segi-Nishida E, Warner-Schmidt JL, Duman RS (2008) Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus. Proc Natl Acad Sci USA 105:11352–11357

    Article  PubMed  Google Scholar 

  • Silva R, Martins L, Longatto-Filho A, Almeida OF, Sousa N (2007) Lithium prevents stress-induced reduction of vascular endothelium growth factor levels. Neurosci Lett 429:33–38

    Article  PubMed  CAS  Google Scholar 

  • So J, Warsh JJ, Li PP (2007) Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. Biol Psychiatry 62:141–147

    Article  PubMed  CAS  Google Scholar 

  • Somervaille TC, Linch DC, Khwaja A (2001) Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax. Blood 98:1374–1381

    Article  PubMed  CAS  Google Scholar 

  • Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 26:943–954

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Young LT, Wang JF, Grof P, Turecki G, Rouleau GA, Alda M (2004) Identification of lithium-regulated genes in cultured lymphoblasts of lithium responsive subjects with bipolar disorder. Neuropsychopharmacology 29:799–804

    Article  PubMed  CAS  Google Scholar 

  • Swann AC, Bowden CL, Calabrese JR, Dilsaver SC, Morris DD (2002) Pattern of response to divalproex, lithium, or placebo in four naturalistic subtypes of mania. Neuropsychopharmacology 26:530–536

    Article  PubMed  CAS  Google Scholar 

  • Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, Hakem R, Greenberg AH (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20:5454–5468

    Article  Google Scholar 

  • Vawter MP, Ferran E, Galke B, Cooper K, Bunney WE, Byerley W (2004) Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree. Schizophr Res 67:41–52

    Article  PubMed  Google Scholar 

  • Ventriglia M, Zanardini R, Pedrini L, Placentino A, Nielsen MG, Gennarelli M, Bocchio-Chiavetto L (2009) VEGF serum levels in depressed patients during SSRI antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry 33:146–149

    Article  PubMed  CAS  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2007) VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci USA 104:4647–4652

    Article  PubMed  CAS  Google Scholar 

  • Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417:292–295

    Article  PubMed  CAS  Google Scholar 

  • Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM (2009) The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psychiatry 14:51–59

    Article  PubMed  CAS  Google Scholar 

  • Zgouras D, Becker U, Loitsch S, Stein J (2004) Modulation of angiogenesis-related protein synthesis by valproic acid. Biochem Biophys Res Commun 316:693–697

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Gray NA, Yuan P, Li X, Chen J, Chen G, Damschroder-Williams P, Du J, Zhang L, Manji HK (2005) The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. J Neurosci 25:4493–4502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Research Resource Center of our institute for performing the microarray analysis. This work was supported in part by a Grant-in-Aid from the Japanese Ministry of Health and Labor; Grants-in-Aid from the Japanese Ministry of Education, Culture, Sports, Science, and Technology; and Grants-in-Aid for Mental Health Research from Ministry of Health, Labor, and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadafumi Kato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 19 kb)

(PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugawara, H., Iwamoto, K., Bundo, M. et al. Effect of mood stabilizers on gene expression in lymphoblastoid cells. J Neural Transm 117, 155–164 (2010). https://doi.org/10.1007/s00702-009-0340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0340-8

Keywords

Navigation