Skip to main content
Log in

Applying Pharmacodynamics and Antimicrobial Stewardship to Pediatric Preseptal and Orbital Cellulitis

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Orbital and preseptal cellulitis are most commonly caused by organisms that originate in the upper respiratory tract or from the skin. There is significant variation in antibiotics used, but ampicillin–sulbactam, ceftriaxone, metronidazole, clindamycin, amoxicillin, amoxicillin–clavulanate, cefuroxime, and vancomycin are often used in the treatment of these infections. The choice of antibiotic, however, is only one consideration. It is also important that antibiotics are dosed to optimize their pharmacodynamic target attainment. Like other serious infections, therapy can be transitioned from initial intravenous therapy to an oral regimen when there are clear signs of clinical and laboratory improvement. The total duration of therapy for these infections have also been decreasing in recent years with durations of approximately 2 weeks becoming more common, even for orbital or subperiosteal infections. Antimicrobial stewardship programs can work closely with providers who manage these infections to create pathways, choose optimal antibiotics and dosage, transition from intravenous to oral therapy, and provide shortest effective durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santos JC, Pinto S, Ferreira S, Maia C, Alves S, Da Silva V. Pediatric preseptal and orbital cellulitis: a 10-year experience. Int J Pediatr Otorhinolaryngol. 2019;120:82–8.

    PubMed  Google Scholar 

  2. Arjmand EM, Lusk RP, Muntz HR. Pediatric sinusitis and subperiosteal orbital abscess formation: diagnosis and treatment. Otolaryngol Head Neck Surg. 1993;109(5):886–94.

    CAS  PubMed  Google Scholar 

  3. Aygün D, Doğan C, Hepokur M, Arslan OŞ, Çokuğraş H, Camcıoglu Y. Evaluation of patients with orbital infections. Turk Pediatri Ars. 2017;52(4):221–5.

    PubMed  PubMed Central  Google Scholar 

  4. Chandler JR, Langenbrunner DJ, Stevens ER. The pathogenesis of orbital complications in acute sinusitis. Laryngoscope. 1970;80(9):1414–28.

    CAS  PubMed  Google Scholar 

  5. Coudert A, Ayari-Khalfallah S, Suy P, Truy E. Microbiology and antibiotic therapy of subperiosteal orbital abscess in children with acute ethmoiditis. Int J Pediatr Otorhinolaryngol. 2018;106:91–5.

    CAS  PubMed  Google Scholar 

  6. Ekhlassi T, Becker N. Preseptal and orbital cellulitis. Dis Mon. 2017;63(2):30–2.

    PubMed  Google Scholar 

  7. Constantin F, Niculescu PA, Petre O, et al. Orbital cellulitis and brain abscess—rare complications of maxillo-spheno-ethmoidal rhinosinusitis. Rom J Ophthalmol. 2017;61(2):133–6.

    PubMed  PubMed Central  Google Scholar 

  8. Georgakopoulos CD, Eliopoulou MI, Stasinos S, Exarchou A, Pharmakakis N, Varvarigou A. Periorbital and orbital cellulitis: a 10-year review of hospitalized children. Eur J Ophthalmol. 2010;20(6):1066–72.

    PubMed  Google Scholar 

  9. Harris GJ. Subperiosteal abscess of the orbit. Age as a factor in the bacteriology and response to treatment. Ophthalmology. 1994;101(3):585–95.

    CAS  PubMed  Google Scholar 

  10. Peña MT, Preciado D, Orestes M, Choi S. Orbital complications of acute sinusitis: changes in the post-pneumococcal vaccine era. JAMA Otolaryngol Head Neck Surg. 2013;139(3):223–7.

    PubMed  Google Scholar 

  11. Flam JO, Platt MP, Sobel R, Devaiah AK, Brook CD. Association of oral flora with orbital complications of acute sinusitis. Am J Rhinol Allergy. 2016;30(4):257–60.

    PubMed  Google Scholar 

  12. Wurster JI, Bispo PJM, van Tyne D, Cadorette JJ, Boody R, Gilmore MS. Staphylococcus aureus from ocular and otolaryngology infections are frequently resistant to clinically important antibiotics and are associated with lineages of community and hospital origins. PLoS One. 2018;13(12):e0208518.

    PubMed  PubMed Central  Google Scholar 

  13. Iftikhar M, Junaid N, Lemus M, et al. Epidemiology of primary ophthalmic inpatient admissions in the United States. Am J Ophthalmol. 2018;185:101–9.

    PubMed  Google Scholar 

  14. Mathew AV, Craig E, Al-mahmoud R, et al. Paediatric post-septal and pre-septal cellulitis: 10 years’ experience at a tertiary-level children’s hospital. Br J Radiol. 2014;87(1033):20130503.

    CAS  PubMed  Google Scholar 

  15. Shoaei SD, Tehrani S, Zahra AM. Frequency of preseptal cellulitis and its risk factors in patients admitted to two educational hospitals in Tehran, Iran, during 2014–2015. Int J Infect. 2016;4(2):1–4.

    Google Scholar 

  16. Amato M, Pershing S, Walvick M, Tanaka S. Trends in ophthalmic manifestations of methicillin-resistant Staphylococcus aureus (MRSA) in a northern California pediatric population. J AAPOS. 2013;17(3):243–7.

    PubMed  Google Scholar 

  17. Reynolds DJ, Kodsi SR, Rubin SE, Rodgers IR. Intracranial infection associated with preseptal and orbital cellulitis in the pediatric patient. J AAPOS. 2003;7(6):413–7.

    PubMed  Google Scholar 

  18. Liu IT, et al. Preseptal and orbital cellulitis: a 10-year review of hospitalized patients. J Chin Med Assoc. 2006;69(9):415–22.

    PubMed  Google Scholar 

  19. Chaudhry IA, Shamsi FA, Elzaridi E, Al-Rashed W, Al-Amri A, Arat YO. Inpatient preseptal cellulitis: experience from a tertiary eye care centre. Br J Ophthalmol. 2008;92(10):1337–41.

    CAS  PubMed  Google Scholar 

  20. Devrim I, Kanra G, Kara A, et al. Preseptal and orbital cellulitis: 15-year experience with sulbactam ampicillin treatment. Turk J Pediatr. 2008;50(3):214–8.

    PubMed  Google Scholar 

  21. Eviatar E, Gavriel H, Pitaro K, Vaiman M, Goldman M, Kessler A. Conservative treatment in rhinosinusitis orbital complications in children aged 2 years and younger. Rhinology. 2008;46(4):334–7.

    PubMed  Google Scholar 

  22. Yang M, Quah BL, Seah LL, Looi A. Orbital cellulitis in children-medical treatment versus surgical management. Orbit. 2009;28(2–3):124–36.

    PubMed  Google Scholar 

  23. Seltz LB, Smith J, Durairaj VD, Enzenauer R, Todd J. Microbiology and antibiotic management of orbital cellulitis. Pediatrics. 2011;127(3):e566–72.

    PubMed  Google Scholar 

  24. Suhaili DN, Goh BS, Gendeh BS. A ten year retrospective review of orbital complications secondary to acute sinusitis in children. Med J Malaysia. 2010;65(1):49–52.

    PubMed  Google Scholar 

  25. Hurley EP, Harris GJ. Subperiosteal abscess of the orbit: duration of intravenous antibiotic therapy in nonsurgical cases. Ophthalmic Plast Reconstr Surg. 2012;28(1):22–6.

    Google Scholar 

  26. Markham JL, Hall M, Bettenhausen JL, Myers AL, Puls HT, McCulloh RJ. Variation in care and clinical outcomes in children hospitalized with orbital cellulitis. Hosp Pediatr. 2018;8(1):28–35.

    PubMed  Google Scholar 

  27. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3:1–150.

    Google Scholar 

  28. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10.

    CAS  PubMed  Google Scholar 

  29. Craig WA. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis. 1995;22(1–2):89–96.

    CAS  PubMed  Google Scholar 

  30. CLSI Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Wayne: Clinical and Laboratory Standards Institute; 2019. Online. Accessed 18 May 2019.

  31. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. Online. Accessed 18 May 2019.

  32. Nahata MC, Vashi VI, Swanson RN, Messig MA, Chung M. Pharmacokinetics of ampicillin and sulbactam in pediatric patients. Antimicrob Agents Chemother. 1999;43(5):1225–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ampicillin–Sulbactam. Lexi-Drugs. Lexicomp. Riverwoods: Wolters Kluwer Health, Inc.; 2018.

  34. Reed MD. Clinical pharmacokinetics of amoxicillin and clavulanate. Pediatr Infect Dis J. 1996;15(10):949–54.

    CAS  PubMed  Google Scholar 

  35. Fallon RM, Kuti JL, Doern GV, Girotto JE, Nicolau DP. Pharmacodynamic target attainment of oral beta-lactams for the empiric treatment of acute otitis media in children. Paediatr Drugs. 2008;10(5):329–35.

    PubMed  Google Scholar 

  36. Ceftriaxone [package insert]. Princeton: Sandoz Inc.; 2013.

  37. Bowlware KL, McCracken GH, Lozano-Hernandez J, Ghaffar F. Cefdinir pharmacokinetics and tolerability in children receiving 25 mg/kg once daily. Pediatr Infect Dis J. 2006;25(3):208–10.

    PubMed  Google Scholar 

  38. Vantin (cefpodoxime) [package insert]. New York: Pfizer Inc., 2013.

  39. Kearns GL, Abdel-Rahman SM, Jacobs RF, Wells TG, Borin MT. Cefpodoxime pharmacokinetics in children: effect of food. Pediatr Infect Dis J. 1998;17(9):799–804.

    CAS  PubMed  Google Scholar 

  40. Ceftin (cefuroxime) [package insert]. Research Triangle Park: GlaxoSmithKline.; 2017.

  41. Ginsburg CM, McCracken GH, Petruska M, Olson K. Pharmacokinetics and bactericidal activity of cefuroxime axetil. Antimicrob Agents Chemother. 1985;28(4):504–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Child J, Chen X, Mistry RD, et al. Pharmacokinetic and pharmacodynamic properties of metronidazole in pediatric patients with acute appendicitis: a prospective study. J Pediatr Infect Dis Soc. 2018;00(00):1–6.

    Google Scholar 

  43. Gonzalez D, Melloni C, Yogev R, et al. Pharmacokinetic model to support dosing of clindamycin for premature infants to adolescents. Clin Pharmacol Ther. 2014;96(4):429–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stimes GT, Girotto JE, Courter JD. Pharmacodynamic target attainment of common antibiotics against various MICs up to Staphylococcus aureus breakpoints for osteomyelitis. Poster presented at: Making a difference in infectious diseases pharmacotherapy, Orlando; 2019.

  45. Le J, Bradley JS, Murray W, et al. Improved vancomycin dosing in children using area under the curve exposure. Pediatr Infect Dis J. 2013;32(4):e155–63.

    PubMed  PubMed Central  Google Scholar 

  46. Taketomo CK. Pediatric and neonatal dosage handbook. 25th edi. Lexi-Comp; 2018.

  47. American Academy of Pediatrics. Tables of antibacterial drug dosages. In: Pickering LK, Baker CJ, Kimberlin DW, Long SS, editors. Red Book: 2018 Report of the Committee on Infectious Diseases. Elk Grove Village: American Academy of Pediatrics; 2018. p. 914–932.

  48. Amoxicillin [package insert]. Research Triangle Park: GlaxoSmithKline; 2006.

  49. Guay DR. Pharmacodynamics and pharmacokinetics of cefdinir, an oral extended spectrum cephalosporin. Pediatr Infect Dis J. 2000;19(12 Suppl):S141–6.

    CAS  PubMed  Google Scholar 

  50. Parker S, Mitchell M, Child J. Cephem antibiotics: wise use today preserves cure for tomorrow. Pediatr Rev. 2013;34(11):510–23.

    PubMed  Google Scholar 

  51. Lamp KC, Freeman CD, Klutman NE, Lacy MK. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin Pharmacokinet. 1999;36(5):353–73.

    CAS  PubMed  Google Scholar 

  52. Agudelo M, Vesga O. Therapeutic equivalence requires pharmaceutical, pharmacokinetic, and pharmacodynamic identities: true bioequivalence of a generic product of intravenous metronidazole. Antimicrob Agents Chemother. 2012;56(5):2659–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nastro LJ, Finegold SM. Endocarditis due to anaerobic Gram-negative bacilli. Am J Med. 1973;54(4):482–96.

    CAS  PubMed  Google Scholar 

  54. Brook I, Wexler HM, Goldstein EJ. Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin Microbiol Rev. 2013;26(3):526–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rybak MJ, Lomaestro BM, Rotschafer JC, et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis. 2009;49(3):325–7.

    PubMed  Google Scholar 

  56. Chavada R, Ghosh N, Sandaradura I, Maley M, van Hal SJ. Establishment of an AUC threshold for nephrotoxicity is a step towards individualized vancomycin dosing for methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2017;61(5):1–8.

    Google Scholar 

  57. Aljefri DM, Avedissian SN, Rhodes NJ, Postelnick MJ, Nguyen K, Scheetz MH. Vancomycin area under the curve and acute kidney injury: a meta-analysis. Clin Infect Dis. 2019 (Epub ahead of print).

  58. Le J, Ny P, Capparelli E, et al. Pharmacodynamic characteristics of nephrotoxicity associated with vancomycin use in children. J Pediatr Infect Dis Soc. 2015;4(4):e109–16.

    Google Scholar 

  59. Cannon PS, McKeag D, Radford R, Ataullah S, Leatherbarrow B. Our experience using primary oral antibiotics in the management of orbital cellulitis in a tertiary referral centre. Eye (Lond). 2009;23(3):612–5.

    CAS  Google Scholar 

  60. Stevens V, Dumyati G, Fine LS, Fisher SG, van Wijngaarden E. Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis. 2011;53(1):42–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer E. Girotto.

Ethics declarations

Conflict of interest

Dr. Stimes has no conflicts of interest to disclose; Dr. Girotto is on the Editorial Board of Pediatric Drugs. The authors received no financial support for the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stimes, G.T., Girotto, J.E. Applying Pharmacodynamics and Antimicrobial Stewardship to Pediatric Preseptal and Orbital Cellulitis. Pediatr Drugs 21, 427–438 (2019). https://doi.org/10.1007/s40272-019-00357-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-019-00357-3

Navigation