Skip to main content
Log in

New and Emerging Therapies for Pediatric Atopic Dermatitis

  • Leading Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Atopic dermatitis (AD) is a chronic, inflammatory skin disease characterized by pruritus, inflammatory erythematous skin lesions, and skin-barrier defect. Current mainstay treatments of emollients, steroids, calcineurin inhibitors, and immunosuppressants have limited efficacy and potentially serious side effects. Recent advances and understanding of the pathogenesis of AD have resulted in new therapies that target specific pathways with increased efficacy and the potential for less systemic side effects. New FDA-approved therapies for AD are crisaborole and dupilumab. The JAK-STAT inhibitors (baricitinib, upadacitinib, PF-04965842, ASN002, tofacitinib, ruxolitinib, and delgocitinib) have the most promising results of the emerging therapies. Other drugs with potential include the aryl hydrocarbon receptor modulating agent tapinarof, the IL-4/IL-13 antagonists lebrikizumab and tralokinumab, and the IL-31Rα antagonist nemolizumab. In this review, new and emerging AD therapies will be discussed along with their mechanisms of action and their potential based on clinical study data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res. 2018;10(3):207–15. https://doi.org/10.4168/aair.2018.10.3.207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Han H, Roan F, Ziegler SF. The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev. 2017;278(1):116–30. https://doi.org/10.1111/imr.12546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. David Boothe W, Tarbox JA, Tarbox MB. Atopic dermatitis: pathophysiology. Adv Exp Med Biol. 2017;1027:21–37. https://doi.org/10.1007/978-3-319-64804-0_3.

    Article  CAS  PubMed  Google Scholar 

  4. Malik K, Heitmiller KD, Czarnowicki T. An update on the pathophysiology of atopic dermatitis. Dermatol Clin. 2017;35(3):317–26. https://doi.org/10.1016/j.det.2017.02.006.

    Article  CAS  PubMed  Google Scholar 

  5. Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. J Allergy Clin Immunol. 2014;134(4):769–79. https://doi.org/10.1016/j.jaci.2014.08.008.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Silverberg JI, Gelfand JM, Margolis DJ, Boguniewicz M, Fonacier L, Grayson MH, et al. Patient burden and quality of life in atopic dermatitis in US adults: a population-based cross-sectional study. Ann Allergy Asthma Immunol. 2018;121(3):340–7. https://doi.org/10.1016/j.anai.2018.07.006.

    Article  PubMed  Google Scholar 

  7. Drucker AM, Wang AR, Li WQ, Sevetson E, Block JK, Qureshi AA. The burden of atopic dermatitis: summary of a report for the National Eczema Association. J Invest Dermatol. 2017;137(1):26–30. https://doi.org/10.1016/j.jid.2016.07.012.

    Article  CAS  PubMed  Google Scholar 

  8. Whiteley J, Emir B, Seitzman R, Makinson G. The burden of atopic dermatitis in US adults: results from the 2013 National Health and Wellness Survey. Curr Med Res Opin. 2016;32(10):1645–51. https://doi.org/10.1080/03007995.2016.1195733.

    Article  PubMed  Google Scholar 

  9. Eckert L, Gupta S, Amand C, Gadkari A, Mahajan P, Gelfand JM. The burden of atopic dermatitis in US adults: Health care resource utilization data from the 2013 National Health and Wellness Survey. J Am Acad Dermatol. 2018;78(1):54–61e1. https://doi.org/10.1016/j.jaad.2017.08.002.

    Article  PubMed  Google Scholar 

  10. Eckert L, Gupta S, Amand C, Gadkari A, Mahajan P, Gelfand JM. Impact of atopic dermatitis on health-related quality of life and productivity in adults in the United States: an analysis using the National Health and Wellness Survey. J Am Acad Dermatol. 2017;77(2):274–279e3. https://doi.org/10.1016/j.jaad.2017.04.019.

    Article  PubMed  Google Scholar 

  11. Vivar KL, Kruse L. The impact of pediatric skin disease on self-esteem. Int J Womens Dermatol. 2018;4(1):27–31. https://doi.org/10.1016/j.ijwd.2017.11.002.

    Article  CAS  PubMed  Google Scholar 

  12. Abraham A, Roga G. Topical steroid-damaged skin. Indian J Dermatol. 2014;59(5):456–9. https://doi.org/10.4103/0019-5154.139872.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ashcroft DM, Dimmock P, Garside R, Stein K, Williams HC. Efficacy and tolerability of topical pimecrolimus and tacrolimus in the treatment of atopic dermatitis: meta-analysis of randomised controlled trials. BMJ. 2005;330(7490):516. https://doi.org/10.1136/bmj.38376.439653.D3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siegfried EC, Jaworski JC, Hebert AA. Topical calcineurin inhibitors and lymphoma risk: evidence update with implications for daily practice. Am J Clin Dermatol. 2013;14(3):163–78. https://doi.org/10.1007/s40257-013-0020-1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Margolis DJ, Abuabara K, Hoffstad OJ, Wan J, Raimondo D, Bilker WB. Association between malignancy and topical use of pimecrolimus. JAMA Dermatol. 2015;151(6):594–9. https://doi.org/10.1001/jamadermatol.2014.4305.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Legendre L, Barnetche T, Mazereeuw-Hautier J, Meyer N, Murrell D, Paul C. Risk of lymphoma in patients with atopic dermatitis and the role of topical treatment: a systematic review and meta-analysis. J Am Acad Dermatol. 2015;72(6):992–1002. https://doi.org/10.1016/j.jaad.2015.02.1116.

    Article  PubMed  Google Scholar 

  17. Cury Martins J, Martins C, Aoki V, Gois AF, Ishii HA, da Silva EM. Topical tacrolimus for atopic dermatitis. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.cd009864.pub2.

    Article  Google Scholar 

  18. Castellsague J, Kuiper JG, Pottegard A, Anveden Berglind I, Dedman D, Gutierrez L, et al. A cohort study on the risk of lymphoma and skin cancer in users of topical tacrolimus, pimecrolimus, and corticosteroids (Joint European Longitudinal Lymphoma and Skin Cancer Evaluation-JOELLE study). Clin Epidemiol. 2018;10:299–310. https://doi.org/10.2147/CLEP.S146442.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cattaneo D, Perico N, Gaspari F, Remuzzi G. Nephrotoxic aspects of cyclosporine. Transplant Proc. 2004;36(2 Suppl):234S–9S. https://doi.org/10.1016/j.transproceed.2004.01.011.

    Article  CAS  PubMed  Google Scholar 

  20. Fuggle NR, Bragoli W, Mahto A, Glover M, Martinez AE, Kinsler VA. The adverse effect profile of oral azathioprine in pediatric atopic dermatitis, and recommendations for monitoring. J Am Acad Dermatol. 2015;72(1):108–14. https://doi.org/10.1016/j.jaad.2014.08.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dvorakova V, O’Regan GM, Irvine AD. Methotrexate for severe childhood atopic dermatitis: clinical experience in a tertiary center. Pediatr Dermatol. 2017;34(5):528–34. https://doi.org/10.1111/pde.13209.

    Article  PubMed  Google Scholar 

  22. Drucker AM, Eyerich K, de Bruin-Weller MS, Thyssen JP, Spuls PI, Irvine AD, et al. Use of systemic corticosteroids for atopic dermatitis: International Eczema Council consensus statement. Br J Dermatol. 2018;178(3):768–75. https://doi.org/10.1111/bjd.15928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. FDA. Atopic dermatitis: timing of pediatric studies during development of systemic drugs guidance for industry; 2018. https://www.fda.gov/media/117570/download.

  24. FDA. E11(R1) addendum: clinical investigation of medicinal products in the pediatric population guidance for industry; 2018. https://www.fda.gov/media/101398/download.

  25. Siegfried EC, Jaworski JC, Eichenfield LF, Paller A, Hebert AA, Simpson EL, et al. Developing drugs for treatment of atopic dermatitis in children (≥3 months to <18 years of age): draft guidance for industry. Pediatr Dermatol. 2018;35(3):303–22. https://doi.org/10.1111/pde.13452.

    Article  PubMed  Google Scholar 

  26. Grewe SR, Chan SC, Hanifin JM. Elevated leukocyte cyclic AMP-phosphodiesterase in atopic disease: a possible mechanism for cyclic AMP-agonist hyporesponsiveness. J Allergy Clin Immunol. 1982;70(6):452–7.

    Article  CAS  Google Scholar 

  27. Chan SC, Reifsnyder D, Beavo JA, Hanifin JM. Immunochemical characterization of the distinct monocyte cyclic AMP-phosphodiesterase from patients with atopic dermatitis. J Allergy Clin Immunol. 1993;91(6):1179–88.

    Article  CAS  Google Scholar 

  28. Hanifin JM, Chan SC. Monocyte phosphodiesterase abnormalities and dysregulation of lymphocyte function in atopic dermatitis. J Investig Dermatol. 1995;105(1 Suppl):84S–8S.

    Article  CAS  Google Scholar 

  29. Gantner F, Gotz C, Gekeler V, Schudt C, Wendel A, Hatzelmann A. Phosphodiesterase profile of human B lymphocytes from normal and atopic donors and the effects of PDE inhibition on B cell proliferation. Br J Pharmacol. 1998;123(6):1031–8. https://doi.org/10.1038/sj.bjp.0701688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zebda R, Paller AS. Phosphodiesterase 4 inhibitors. J Am Acad Dermatol. 2018;78(3S1):S43–52. https://doi.org/10.1016/j.jaad.2017.11.056.

    Article  CAS  PubMed  Google Scholar 

  31. Hanifin JM, Chan SC, Cheng JB, Tofte SJ, Henderson WR Jr, Kirby DS, et al. Type 4 phosphodiesterase inhibitors have clinical and in vitro anti-inflammatory effects in atopic dermatitis. J Investig Dermatol. 1996;107(1):51–6.

    Article  CAS  Google Scholar 

  32. Paller AS, Tom WL, Lebwohl MG, Blumenthal RL, Boguniewicz M, Call RS, et al. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J Am Acad Dermatol. 2016;75(3):494–503e6. https://doi.org/10.1016/j.jaad.2016.05.046.

    Article  CAS  PubMed  Google Scholar 

  33. Zane LT, Kircik L, Call R, Tschen E, Draelos ZD, Chanda S, et al. Crisaborole topical ointment, 2% in patients ages 2 to 17 years with atopic dermatitis: a phase 1b, open-label, maximal-use systemic exposure study. Pediatr Dermatol. 2016;33(4):380–7. https://doi.org/10.1111/pde.12872.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eichenfield LF, Call RS, Forsha DW, Fowler J Jr, Hebert AA, Spellman M, et al. Long-term safety of crisaborole ointment 2% in children and adults with mild to moderate atopic dermatitis. J Am Acad Dermatol. 2017;77(4):641–649e5. https://doi.org/10.1016/j.jaad.2017.06.010.

    Article  CAS  PubMed  Google Scholar 

  35. Zane LT, Hughes MH, Shakib S. Tolerability of crisaborole ointment for application on sensitive skin areas: a randomized, double-blind, vehicle-controlled study in healthy volunteers. Am J Clin Dermatol. 2016;17(5):519–26. https://doi.org/10.1007/s40257-016-0204-6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murrell DF, Gebauer K, Spelman L, Zane LT. Crisaborole topical ointment, 2% in adults with atopic dermatitis: a phase 2a, vehicle-controlled, proof-of-concept study. J Drugs Dermatol. 2015;14(10):1108–12.

    CAS  PubMed  Google Scholar 

  37. Stein Gold LF, Spelman L, Spellman MC, Hughes MH, Zane LT. A phase 2, randomized, controlled, dose-ranging study evaluating crisaborole topical ointment, 0.5% and 2% in adolescents with mild to moderate atopic dermatitis. J Drugs Dermatol. 2015;14(12):1394–9.

    PubMed  Google Scholar 

  38. Nemoto O, Hayashi N, Kitahara Y, Furue M, Hojo S, Nomoto M, et al. Effect of topical phosphodiesterase 4 inhibitor E6005 on Japanese children with atopic dermatitis: results from a randomized, vehicle-controlled exploratory trial. J Dermatol. 2016;43(8):881–7. https://doi.org/10.1111/1346-8138.13231.

    Article  CAS  PubMed  Google Scholar 

  39. Ohba F, Matsuki S, Imayama S, Matsuguma K, Hojo S, Nomoto M, et al. Efficacy of a novel phosphodiesterase inhibitor, E6005, in patients with atopic dermatitis: an investigator-blinded, vehicle-controlled study. J Dermatol Treat. 2016;27(5):467–72. https://doi.org/10.3109/09546634.2016.1157257.

    Article  CAS  Google Scholar 

  40. Furue M, Kitahara Y, Akama H, Hojo S, Hayashi N, Nakagawa H, et al. Safety and efficacy of topical E6005, a phosphodiesterase 4 inhibitor, in Japanese adult patients with atopic dermatitis: results of a randomized, vehicle-controlled, multicenter clinical trial. J Dermatol. 2014;41(7):577–85. https://doi.org/10.1111/1346-8138.12534.

    Article  CAS  PubMed  Google Scholar 

  41. Ohba F, Nomoto M, Hojo S, Akama H. Safety, tolerability and pharmacokinetics of a novel phosphodiesterase inhibitor, E6005 ointment, in healthy volunteers and in patients with atopic dermatitis. J Dermatol Treat. 2016;27(3):241–6. https://doi.org/10.3109/09546634.2015.1093587.

    Article  CAS  Google Scholar 

  42. Kitahara Y, Hojo S, Nomoto M, Onozuka D, Furue M, Hagihara A. Pharmacokinetic disposition of topical phosphodiesterase-4 inhibitor E6005 in patients with atopic dermatitis. J Dermatol Treat. 2018. https://doi.org/10.1080/09546634.2018.1530439.

    Article  Google Scholar 

  43. Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal. 2017;15(1):23. https://doi.org/10.1186/s12964-017-0177-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017;77(5):521–46. https://doi.org/10.1007/s40265-017-0701-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Villarino AV, Kanno Y, O’Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017;18(4):374–84. https://doi.org/10.1038/ni.3691.

    Article  CAS  PubMed  Google Scholar 

  46. Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol. 1998;16:293–322. https://doi.org/10.1146/annurev.immunol.16.1.293.

    Article  CAS  PubMed  Google Scholar 

  47. Damsky W, King BA. JAK inhibitors in dermatology: the promise of a new drug class. J Am Acad Dermatol. 2017;76(4):736–44. https://doi.org/10.1016/j.jaad.2016.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Levy LL, Urban J, King BA. Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. J Am Acad Dermatol. 2015;73(3):395–9. https://doi.org/10.1016/j.jaad.2015.06.045.

    Article  CAS  PubMed  Google Scholar 

  49. Vu M, Heyes C, Robertson SJ, Varigos GA, Ross G. Oral tofacitinib: a promising treatment in atopic dermatitis, alopecia areata and vitiligo. Clin Exp Dermatol. 2017;42(8):942–4. https://doi.org/10.1111/ced.13290.

    Article  CAS  PubMed  Google Scholar 

  50. Bissonnette R, Papp KA, Poulin Y, Gooderham M, Raman M, Mallbris L, et al. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br J Dermatol. 2016;175(5):902–11. https://doi.org/10.1111/bjd.14871.

    Article  CAS  PubMed  Google Scholar 

  51. Guttman-Yassky E, Silverberg JI, Nemoto O, Forman SB, Wilke A, Prescilla R, et al. Baricitinib in adult patients with moderate-to-severe atopic dermatitis: a phase 2 parallel, double-blinded, randomized placebo-controlled multiple-dose study. J Am Acad Dermatol. 2018. https://doi.org/10.1016/j.jaad.2018.01.018.

    Article  PubMed  Google Scholar 

  52. Guttman-Yassky E, Silverberg JI, Nemoto O, Forman SB, Wilke A, Prescilla R, et al. Efficacy and safety of upadacitinib treatment over 32 weeks for patients with atopic dermatitis from a phase 2b, randomized, placebo-controlled trial. In: 27th European Academy of Dermatology and Venerology (EADV) Congress, 12 September, Paris, France; 2018.

  53. Peeva E, Hodge MR, Kieras E, Vazquez ML, Goteti K, Tarabar SG, et al. Evaluation of a Janus kinase 1 inhibitor, PF-04965842, in healthy subjects: a phase 1, randomized, placebo-controlled, dose-escalation study. Br J Clin Pharmacol. 2018;84(8):1776–88. https://doi.org/10.1111/bcp.13612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Raedler LA. Jakafi (ruxolitinib): first FDA-approved medication for the treatment of patients with polycythemia vera. Am Health Drug Benefits. 2015;8(Spec Feature):75–9.

    PubMed  PubMed Central  Google Scholar 

  55. Mascarenhas J, Hoffman R. Ruxolitinib: the first FDA approved therapy for the treatment of myelofibrosis. Clin Cancer Res. 2012;18(11):3008–14. https://doi.org/10.1158/1078-0432.ccr-11-3145.

    Article  CAS  PubMed  Google Scholar 

  56. Kim BS, Nasir A, Papp K, Parish LC, Kuligowski M, Venturanza M, et al. A phase II randomized, dose-ranging, vehicle- and active-controlled study to evaluate the safety and efficacy of topical ruxolitinib in adult patients with atopic dermatitis. In: 27th European Academy of Dermatology and Venerology, 12 September, Paris, France; 2018.

  57. Kaur M, Singh M, Silakari O. Inhibitors of switch kinase ‘spleen tyrosine kinase’ in inflammation and immune-mediated disorders: a review. Eur J Med Chem. 2013;67:434–46. https://doi.org/10.1016/j.ejmech.2013.04.070.

    Article  CAS  PubMed  Google Scholar 

  58. Wu N-L, Huang D-Y, Wang L-F, Kannagi R, Fan Y-C, Lin W-W. Spleen tyrosine kinase mediates EGFR signaling to regulate keratinocyte terminal differentiation. J Investig Dermatol. 2016;136(1):192–201. https://doi.org/10.1038/JID.2015.381.

    Article  CAS  PubMed  Google Scholar 

  59. Wu NL, Huang DY, Tsou HN, Lin YC, Lin WW. Syk mediates IL-17-induced CCL20 expression by targeting Act1-dependent K63-linked ubiquitination of TRAF6. J Investig Dermatol. 2015;135(2):490–8. https://doi.org/10.1038/jid.2014.383.

    Article  CAS  PubMed  Google Scholar 

  60. Emma Guttman-Yassky ABP, Song T, Kim HJ, Denis L, Rao N, Zammit DJ. ASN002, a dual oral inhibitor of JAK/SYK signaling, improves the lesional skin phenotype towards non-involved skin in moderate-to-severe atopic dermatitis patients, correlating with clinical outcomes. In: European Academy of Dermatology and Venerology 2018, September 12, Paris, France; 2018.

  61. Emma Guttman-Yassky CM, Forman S, Bhatia N, Lee M, Fowler J, Tyring S, Pariser D, Sofen H, Dhawan S, Zook M, Pavel AB, Estrada Y, Zammit DJ, Toker S, Rao N, Bissonnette R. Efficacy, safety and pharmacology of oral ASN002, a novel JAK/SYK inhibitor, in patients with moderate-to-severe atopic dermatitis: results of a randomized, double-blind, placebo-controlled clinical study. In: International symposium on atopic dermatitis 2018, April 11–13, The Netherlands; 2018.

  62. Nakagawa H, Nemoto O, Yamada H, Nagata T, Ninomiya N. Phase 1 studies to assess the safety, tolerability and pharmacokinetics of JTE-052 (a novel Janus kinase inhibitor) ointment in Japanese healthy volunteers and patients with atopic dermatitis. J Dermatol. 2018;45(6):701–9. https://doi.org/10.1111/1346-8138.14322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakagawa H, Nemoto O, Igarashi A, Nagata T. Efficacy and safety of topical JTE-052, a Janus kinase inhibitor, in Japanese adult patients with moderate-to-severe atopic dermatitis: a phase II, multicentre, randomized, vehicle-controlled clinical study. Br J Dermatol. 2018;178(2):424–32. https://doi.org/10.1111/bjd.16014.

    Article  CAS  PubMed  Google Scholar 

  64. Samrao A, Berry TM, Goreshi R, Simpson EL. A pilot study of an oral phosphodiesterase inhibitor (apremilast) for atopic dermatitis in adults. Arch Dermatol. 2012;148(8):890–7. https://doi.org/10.1001/archdermatol.2012.812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saporito RC, Cohen DJ. Apremilast use for moderate-to-severe atopic dermatitis in pediatric patients. Case Rep Dermatol. 2016;8(2):179–84. https://doi.org/10.1159/000446836.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Abrouk M, Farahnik B, Zhu TH, Nakamura M, Singh R, Lee K, et al. Apremilast treatment of atopic dermatitis and other chronic eczematous dermatoses. J Am Acad Dermatol. 2017;77(1):177–80. https://doi.org/10.1016/j.jaad.2017.03.020.

    Article  PubMed  Google Scholar 

  67. Farahnik B, Beroukhim K, Nakamura M, Abrouk M, Zhu TH, Singh R et al. Use of an oral phosphodiesterase-4 inhibitor (apremilast) for the treatment of chronic, severe atopic dermatitis: a case report. Dermatol Online J. 2017;23(5):1–5.

    Google Scholar 

  68. Volf EM, Au SC, Dumont N, Scheinman P, Gottlieb AB. A phase 2, open-label, investigator-initiated study to evaluate the safety and efficacy of apremilast in subjects with recalcitrant allergic contact or atopic dermatitis. J Drugs Dermatol. 2012;11(3):341–6.

    CAS  PubMed  Google Scholar 

  69. Simpson EL, Imafuku S, Poulin Y, Ungar B, Zhou L, Malik K, et al. A phase 2 randomized trial of apremilast in patients with atopic dermatitis. J Investig Dermatol. 2018. https://doi.org/10.1016/j.jid.2018.10.043.

    Article  PubMed  Google Scholar 

  70. Nagata K, Tanaka K, Ogawa K, Kemmotsu K, Imai T, Yoshie O, et al. Selective expression of a novel surface molecule by human Th2 cells in vivo. J Immunol. 1999;162(3):1278–86.

    CAS  PubMed  Google Scholar 

  71. Satoh T, Moroi R, Aritake K, Urade Y, Kanai Y, Sumi K, et al. Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. J Immunol. 2006;177(4):2621–9.

    Article  CAS  Google Scholar 

  72. Matsushima Y, Satoh T, Yamamoto Y, Nakamura M, Yokozeki H. Distinct roles of prostaglandin D2 receptors in chronic skin inflammation. Mol Immunol. 2011;49(1–2):304–10. https://doi.org/10.1016/j.molimm.2011.08.023.

    Article  CAS  PubMed  Google Scholar 

  73. He R, Oyoshi MK, Wang JY, Hodge MR, Jin H, Geha RS. The prostaglandin D(2) receptor CRTH2 is important for allergic skin inflammation after epicutaneous antigen challenge. J Allergy Clin Immunol. 2010;126(4):784–90. https://doi.org/10.1016/j.jaci.2010.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boehme SA, Chen EP, Franz-Bacon K, Sasik R, Sprague LJ, Ly TW, et al. Antagonism of CRTH2 ameliorates chronic epicutaneous sensitization-induced inflammation by multiple mechanisms. Int Immunol. 2009;21(1):1–17. https://doi.org/10.1093/intimm/dxn118.

    Article  CAS  PubMed  Google Scholar 

  75. Boehme SA, Franz-Bacon K, Chen EP, Sasik R, Sprague LJ, Ly TW, et al. A small molecule CRTH2 antagonist inhibits FITC-induced allergic cutaneous inflammation. Int Immunol. 2009;21(1):81–93. https://doi.org/10.1093/intimm/dxn127.

    Article  CAS  PubMed  Google Scholar 

  76. Yahara H, Satoh T, Miyagishi C, Yokozeki H. Increased expression of CRTH2 on eosinophils in allergic skin diseases. J Eur Acad Dermatol Venereol. 2010;24(1):75–6. https://doi.org/10.1111/j.1468-3083.2009.03267.x.

    Article  CAS  PubMed  Google Scholar 

  77. Jariwala SP, Abrams E, Benson A, Fodeman J, Zheng T. The role of thymic stromal lymphopoietin in the immunopathogenesis of atopic dermatitis. Clin Exp Allergy. 2011;41(11):1515–20. https://doi.org/10.1111/j.1365-2222.2011.03797.x.

    Article  CAS  PubMed  Google Scholar 

  78. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202(9):1213–23. https://doi.org/10.1084/jem.20051135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu YJ. Thymic stromal lymphopoietin and OX40 ligand pathway in the initiation of dendritic cell-mediated allergic inflammation. J Allergy Clin Immunol. 2007;120(2):238–44. https://doi.org/10.1016/j.jaci.2007.06.004(quiz 45-6).

    Article  CAS  PubMed  Google Scholar 

  80. Sano Y, Masuda K, Tamagawa-Mineoka R, Matsunaka H, Murakami Y, Yamashita R, et al. Thymic stromal lymphopoietin expression is increased in the horny layer of patients with atopic dermatitis. Clin Exp Immunol. 2013;171(3):330–7. https://doi.org/10.1111/cei.12021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Glenmark Pharmaceuticals announces oral presentation of new data on GBR 830, an investigational, anti-OX40 monoclonal antibody, at the international investigative dermatology meeting; 2018. https://www.prnewswire.com/news-releases/glenmark-pharmaceuticals-announces-oral-presentation-of-new-data-on-gbr-830-an-investigational-anti-ox40-monoclonal-antibody-at-the-international-investigative-dermatology-meeting-682946661.html.

  82. Simpson EL, Parnes JR, She D, Crouch S, Rees W, Mo M, et al. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial. J Am Acad Dermatol. 2019;80(4):1013–21. https://doi.org/10.1016/j.jaad.2018.11.059.

    Article  CAS  PubMed  Google Scholar 

  83. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453(7191):65–71. https://doi.org/10.1038/nature06880.

    Article  CAS  PubMed  Google Scholar 

  84. Quintana FJ, Sherr DH. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev. 2013;65(4):1148–61. https://doi.org/10.1124/pr.113.007823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453(7191):106–9. https://doi.org/10.1038/nature06881.

    Article  CAS  PubMed  Google Scholar 

  86. Furue M, Tsuji G, Mitoma C, Nakahara T, Chiba T, Morino-Koga S, et al. Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J Dermatol Sci. 2015;80(2):83–8. https://doi.org/10.1016/j.jdermsci.2015.07.011.

    Article  CAS  PubMed  Google Scholar 

  87. Negishi T, Kato Y, Ooneda O, Mimura J, Takada T, Mochizuki H, et al. Effects of aryl hydrocarbon receptor signaling on the modulation of TH1/TH2 balance. J Immunol. 2005;175(11):7348–56.

    Article  CAS  Google Scholar 

  88. Saurat JH, Kaya G, Saxer-Sekulic N, Pardo B, Becker M, Fontao L, et al. The cutaneous lesions of dioxin exposure: lessons from the poisoning of Victor Yushchenko. Toxicol Sci. 2012;125(1):310–7. https://doi.org/10.1093/toxsci/kfr223.

    Article  CAS  PubMed  Google Scholar 

  89. Tan NS, Wahli W. The emerging role of Nrf2 in dermatotoxicology. EMBO Mol Med. 2014;6(4):431–3. https://doi.org/10.1002/emmm.201303797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bissonnette R, Chen G, Bolduc C, Maari C, Lyle M, Tang L, et al. Efficacy and safety of topical WBI-1001 in the treatment of atopic dermatitis: results from a phase 2A, randomized, placebo-controlled clinical trial. Arch Dermatol. 2010;146(4):446–9. https://doi.org/10.1001/archdermatol.2010.34.

    Article  CAS  PubMed  Google Scholar 

  91. Bissonnette R, Poulin Y, Zhou Y, Tan J, Hong HC, Webster J, et al. Efficacy and safety of topical WBI-1001 in patients with mild to severe atopic dermatitis: results from a 12-week, multicentre, randomized, placebo-controlled double-blind trial. Br J Dermatol. 2012;166(4):853–60. https://doi.org/10.1111/j.1365-2133.2011.10775.x.

    Article  CAS  PubMed  Google Scholar 

  92. Peppers J, Paller AS, Maeda-Chubachi T, Wu S, Robbins K, Gallagher K, et al. A phase 2, randomized dose-finding study of tapinarof (GSK2894512 cream) for the treatment of atopic dermatitis. J Am Acad Dermatol. 2019;80(1):89–98e3. https://doi.org/10.1016/j.jaad.2018.06.047.

    Article  CAS  PubMed  Google Scholar 

  93. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120(1):150–5. https://doi.org/10.1016/j.jaci.2007.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim BE, Leung DY, Boguniewicz M, Howell MD. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126(3):332–7. https://doi.org/10.1016/j.clim.2007.11.006.

    Article  CAS  PubMed  Google Scholar 

  95. Honzke S, Wallmeyer L, Ostrowski A, Radbruch M, Mundhenk L, Schafer-Korting M, et al. Influence of Th2 cytokines on the cornified envelope, tight junction proteins, and ss-defensins in filaggrin-deficient skin equivalents. J Investig Dermatol. 2016;136(3):631–9. https://doi.org/10.1016/j.jid.2015.11.007.

    Article  CAS  PubMed  Google Scholar 

  96. Agrawal R, Woodfolk JA. Skin barrier defects in atopic dermatitis. Curr Allergy Asthma Rep. 2014;14(5):433. https://doi.org/10.1007/s11882-014-0433-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Beck LA, Thaci D, Hamilton JD, Graham NM, Bieber T, Rocklin R, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371(2):130–9. https://doi.org/10.1056/NEJMoa1314768.

    Article  CAS  PubMed  Google Scholar 

  98. Thaci D, Simpson EL, Beck LA, Bieber T, Blauvelt A, Papp K, et al. Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial. Lancet. 2016;387(10013):40–52. https://doi.org/10.1016/S0140-6736(15)00388-8.

    Article  CAS  PubMed  Google Scholar 

  99. Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2016;375(24):2335–48. https://doi.org/10.1056/NEJMoa1610020.

    Article  CAS  PubMed  Google Scholar 

  100. Blauvelt A, de Bruin-Weller M, Gooderham M, Cather JC, Weisman J, Pariser D, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet. 2017;389(10086):2287–303. https://doi.org/10.1016/S0140-6736(17)31191-1.

    Article  CAS  PubMed  Google Scholar 

  101. Regeneron Pharmaceuticals I. FDA approves Dupixent® (dupilumab) for moderate-to-severe atopic dermatitis in adolescents; 2019. https://www.prnewswire.com/news-releases/fda-approves-dupixent-dupilumab-for-moderate-to-severe-atopic-dermatitis-in-adolescents-300810264.html. Accessed 15 Mar 2019.

  102. Antoniu SA. Pitrakinra, a dual IL-4/IL-13 antagonist for the potential treatment of asthma and eczema. Curr Opin Investig Drugs. 2010;11(11):1286–94.

    CAS  PubMed  Google Scholar 

  103. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–98. https://doi.org/10.1056/NEJMoa1106469.

    Article  CAS  PubMed  Google Scholar 

  104. May RD, Monk PD, Cohen ES, Manuel D, Dempsey F, Davis NH, et al. Preclinical development of CAT-354, an IL-13 neutralizing antibody, for the treatment of severe uncontrolled asthma. Br J Pharmacol. 2012;166(1):177–93. https://doi.org/10.1111/j.1476-5381.2011.01659.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ultsch M, Bevers J, Nakamura G, Vandlen R, Kelley RF, Wu LC, et al. Structural basis of signaling blockade by anti-IL-13 antibody Lebrikizumab. J Mol Biol. 2013;425(8):1330–9. https://doi.org/10.1016/j.jmb.2013.01.024.

    Article  CAS  PubMed  Google Scholar 

  106. Popovic B, Breed J, Rees DG, Gardener MJ, Vinall LM, Kemp B, et al. Structural characterisation reveals mechanism of IL-13-neutralising monoclonal antibody tralokinumab as inhibition of binding to IL-13Ralpha1 and IL-13Ralpha2. J Mol Biol. 2017;429(2):208–19. https://doi.org/10.1016/j.jmb.2016.12.005.

    Article  CAS  PubMed  Google Scholar 

  107. Wollenberg A, Howell MD, Guttman-Yassky E, Silverberg JI, Kell C, Ranade K, et al. Treatment of atopic dermatitis with tralokinumab, an anti-IL-13 mAb. J Allergy Clin Immunol. 2018. https://doi.org/10.1016/j.jaci.2018.05.029.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Simpson EL, Flohr C, Eichenfield LF, Bieber T, Sofen H, Taieb A, et al. Efficacy and safety of lebrikizumab (an anti-IL-13 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical corticosteroids: a randomized, placebo-controlled phase II trial (TREBLE). J Am Acad Dermatol. 2018;78(5):863–871e11. https://doi.org/10.1016/j.jaad.2018.01.017.

    Article  CAS  PubMed  Google Scholar 

  109. Shahabuddin S, Ponath P, Schleimer RP. Migration of eosinophils across endothelial cell monolayers: interactions among IL-5, endothelial-activating cytokines, and C-C chemokines. J Immunol. 2000;164(7):3847–54.

    Article  CAS  Google Scholar 

  110. Ochiai K, Kagami M, Matsumura R, Tomioka H. IL-5 but not interferon-gamma (IFN-gamma) inhibits eosinophil apoptosis by up-regulation of bcl-2 expression. Clin Exp Immunol. 1997;107(1):198–204.

    Article  CAS  Google Scholar 

  111. Corren J. Inhibition of interleukin-5 for the treatment of eosinophilic diseases. Discov Med. 2012;13(71):305–12.

    PubMed  Google Scholar 

  112. Poulakos MN, Cargill SM, Waineo MF, Wolford AL Jr. Mepolizumab for the treatment of severe eosinophilic asthma. Am J Health Syst Pharm. 2017;74(13):963–9. https://doi.org/10.2146/ajhp160291.

    Article  CAS  PubMed  Google Scholar 

  113. Ortega HG, Yancey SW, Mayer B, Gunsoy NB, Keene ON, Bleecker ER, et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med. 2016;4(7):549–56. https://doi.org/10.1016/S2213-2600(16)30031-5.

    Article  CAS  PubMed  Google Scholar 

  114. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651–9. https://doi.org/10.1016/S0140-6736(12)60988-X.

    Article  CAS  PubMed  Google Scholar 

  115. Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371(13):1198–207. https://doi.org/10.1056/NEJMoa1403290.

    Article  CAS  PubMed  Google Scholar 

  116. Shimoda T, Odajima H, Okamasa A, Kawase M, Komatsubara M, Mayer B, et al. Efficacy and safety of mepolizumab in Japanese patients with severe eosinophilic asthma. Allergol Int. 2017;66(3):445–51. https://doi.org/10.1016/j.alit.2016.11.006.

    Article  CAS  PubMed  Google Scholar 

  117. Magnan A, Bourdin A, Prazma CM, Albers FC, Price RG, Yancey SW, et al. Treatment response with mepolizumab in severe eosinophilic asthma patients with previous omalizumab treatment. Allergy. 2016;71(9):1335–44. https://doi.org/10.1111/all.12914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Keating GM. Mepolizumab: first global approval. Drugs. 2015;75(18):2163–9. https://doi.org/10.1007/s40265-015-0513-8.

    Article  CAS  PubMed  Google Scholar 

  119. Oldhoff JM, Darsow U, Werfel T, Katzer K, Wulf A, Laifaoui J, et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy. 2005;60(5):693–6. https://doi.org/10.1111/j.1398-9995.2005.00791.x.

    Article  CAS  PubMed  Google Scholar 

  120. Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, Kikuchi T, et al. IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol. 2009;123(6):1244–1252e2. https://doi.org/10.1016/j.jaci.2009.03.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lou H, Lu J, Choi EB, Oh MH, Jeong M, Barmettler S, et al. Expression of IL-22 in the skin causes Th2-biased immunity, epidermal barrier dysfunction, and pruritus via stimulating epithelial Th2 cytokines and the GRP pathway. J Immunol. 2017;198(7):2543–55. https://doi.org/10.4049/jimmunol.1600126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity. 2004;21(2):241–54. https://doi.org/10.1016/j.immuni.2004.07.007.

    Article  CAS  PubMed  Google Scholar 

  123. Guttman-Yassky E, Brunner PM, Neumann AU, Khattri S, Pavel AB, Malik K, et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J Am Acad Dermatol. 2018;78(5):872–881e6. https://doi.org/10.1016/j.jaad.2018.01.016.

    Article  CAS  PubMed  Google Scholar 

  124. Brunner PM, Pavel AB, Khattri S, Leonard A, Malik K, Rose S, et al. Baseline IL-22 expression in patients with atopic dermatitis stratifies tissue responses to fezakinumab. J Allergy Clin Immunol. 2018. https://doi.org/10.1016/j.jaci.2018.07.028.

    Article  PubMed  Google Scholar 

  125. Akdis M, Aab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984–1010. https://doi.org/10.1016/j.jaci.2016.06.033.

    Article  CAS  PubMed  Google Scholar 

  126. Raap U, Gehring M, Kleiner S, Rudrich U, Eiz-Vesper B, Haas H, et al. Human basophils are a source of—and are differentially activated by—IL-31. Clin Exp Allergy. 2017;47(4):499–508. https://doi.org/10.1111/cea.12875.

    Article  CAS  PubMed  Google Scholar 

  127. Kunsleben N, Rudrich U, Gehring M, Novak N, Kapp A, Raap U. IL-31 induces chemotaxis, calcium mobilization, release of reactive oxygen species, and CCL26 in eosinophils, which are capable to release IL-31. J Investig Dermatol. 2015;135(7):1908–11. https://doi.org/10.1038/jid.2015.106.

    Article  CAS  PubMed  Google Scholar 

  128. Bagci IS, Ruzicka T. IL-31: a new key player in dermatology and beyond. J Allergy Clin Immunol. 2018;141(3):858–66. https://doi.org/10.1016/j.jaci.2017.10.045.

    Article  CAS  PubMed  Google Scholar 

  129. Hermanns HM. Oncostatin M and interleukin-31: cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev. 2015;26(5):545–58. https://doi.org/10.1016/j.cytogfr.2015.07.006.

    Article  CAS  PubMed  Google Scholar 

  130. Nemoto O, Furue M, Nakagawa H, Shiramoto M, Hanada R, Matsuki S, et al. The first trial of CIM331, a humanized antihuman interleukin-31 receptor A antibody, in healthy volunteers and patients with atopic dermatitis to evaluate safety, tolerability and pharmacokinetics of a single dose in a randomized, double-blind, placebo-controlled study. Br J Dermatol. 2016;174(2):296–304. https://doi.org/10.1111/bjd.14207.

    Article  CAS  PubMed  Google Scholar 

  131. Ruzicka T, Hanifin JM, Furue M, Pulka G, Mlynarczyk I, Wollenberg A, et al. Anti-interleukin-31 receptor A antibody for atopic dermatitis. N Engl J Med. 2017;376(9):826–35. https://doi.org/10.1056/NEJMoa1606490.

    Article  CAS  PubMed  Google Scholar 

  132. Kabashima K, Furue M, Hanifin JM, Pulka G, Wollenberg A, Galus R, et al. Nemolizumab in patients with moderate-to-severe atopic dermatitis: randomized, phase II, long-term extension study. J Allergy Clin Immunol. 2018;142(4):1121–1130e7. https://doi.org/10.1016/j.jaci.2018.03.018.

    Article  CAS  PubMed  Google Scholar 

  133. Toyoda M, Nakamura M, Makino T, Hino T, Kagoura M, Morohashi M. Nerve growth factor and substance P are useful plasma markers of disease activity in atopic dermatitis. Br J Dermatol. 2002;147(1):71–9. https://doi.org/10.1046/j.1365-2133.2002.04803.x.

    Article  CAS  PubMed  Google Scholar 

  134. Zhang Z, Zheng W, Xie H, Chai R, Wang J, Zhang H, et al. Up-regulated expression of substance P in CD8(+) T cells and NK1R on monocytes of atopic dermatitis. J Transl Med. 2017;15(1):93. https://doi.org/10.1186/s12967-017-1196-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhan M, Zheng W, Jiang Q, Zhao Z, Wang Z, Wang J, et al. Upregulated expression of substance P (SP) and NK1R in eczema and SP-induced mast cell accumulation. Cell Biol Toxicol. 2017;33(4):389–405. https://doi.org/10.1007/s10565-016-9379-0.

    Article  CAS  PubMed  Google Scholar 

  136. Hon KL, Lam MC, Wong KY, Leung TF, Ng PC. Pathophysiology of nocturnal scratching in childhood atopic dermatitis: the role of brain-derived neurotrophic factor and substance P. Br J Dermatol. 2007;157(5):922–5. https://doi.org/10.1111/j.1365-2133.2007.08149.x.

    Article  CAS  PubMed  Google Scholar 

  137. Spitsin S, Pappa V, Douglas SD. Truncation of neurokinin-1 receptor-Negative regulation of substance P signaling. J Leukoc Biol. 2018. https://doi.org/10.1002/jlb.3mir0817-348r.

    Article  PubMed  Google Scholar 

  138. Stander S, Siepmann D, Herrgott I, Sunderkotter C, Luger TA. Targeting the neurokinin receptor 1 with aprepitant: a novel antipruritic strategy. PLoS One. 2010;5(6):e10968. https://doi.org/10.1371/journal.pone.0010968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Duval A, Dubertret L. Aprepitant as an antipruritic agent? N Engl J Med. 2009;361(14):1415–6. https://doi.org/10.1056/NEJMc0906670.

    Article  CAS  PubMed  Google Scholar 

  140. Torres T, Fernandes I, Selores M, Alves R, Lima M. Aprepitant: evidence of its effectiveness in patients with refractory pruritus continues. J Am Acad Dermatol. 2012;66(1):e14–5. https://doi.org/10.1016/j.jaad.2011.01.016.

    Article  PubMed  Google Scholar 

  141. Booken N, Heck M, Nicolay JP, Klemke CD, Goerdt S, Utikal J. Oral aprepitant in the therapy of refractory pruritus in erythrodermic cutaneous T-cell lymphoma. Br J Dermatol. 2011;164(3):665–7. https://doi.org/10.1111/j.1365-2133.2010.10108.x.

    Article  CAS  PubMed  Google Scholar 

  142. Song JS, Tawa M, Chau NG, Kupper TS, LeBoeuf NR. Aprepitant for refractory cutaneous T-cell lymphoma-associated pruritus: 4 cases and a review of the literature. BMC Cancer. 2017;17(1):200. https://doi.org/10.1186/s12885-017-3194-8.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Jimenez Gallo D, Albarran Planelles C, Linares Barrios M, Fernandez Anguita MJ, Marquez Enriquez J, Rodriguez Mateos ME. Treatment of pruritus in early-stage hypopigmented mycosis fungoides with aprepitant. Dermatol Ther. 2014;27(3):178–82. https://doi.org/10.1111/dth.12113.

    Article  PubMed  Google Scholar 

  144. Ally MS, Gamba CS, Peng DH, Tang JY. The use of aprepitant in brachioradial pruritus. JAMA Dermatol. 2013;149(5):627–8. https://doi.org/10.1001/jamadermatol.2013.170.

    Article  PubMed  Google Scholar 

  145. Yosipovitch G, Ständer S, Kerby MB, Larrick JW, Perlman AJ, Schnipper EF, et al. Serlopitant for the treatment of chronic pruritus: Results of a randomized, multicenter, placebo-controlled phase 2 clinical trial. J Am Acad Dermatol. 2018;78(5):882–891.e10. https://doi.org/10.1016/j.jaad.2018.02.030.

    Article  CAS  PubMed  Google Scholar 

  146. Menlo Therapeutics. Menlo Therapeutics announces results from a phase 2 trial of serlopitant for pruritus associated with atopic dermatitis; 2018. http://www.menlotherapeutics.com/newsroom/menlo-therapeutics-announces-results-from-a-phase-2-trial-of-serlopitant-for-pruritus-associated-with-atopic-dermatitis/.  Accessed 1 Oct 2018.

  147. Heitman A, Xiao C, Cho Y, Polymeropoulos C, Birznieks G, Polymeropoulos M. Tradipitant improves worst itch and disease severity in patients with chronic pruritus related to atopic dermatitis. J Am Acad Dermatol. 2018;79(3):AB300. https://doi.org/10.1016/j.jaad.2018.05.1184.

    Article  Google Scholar 

  148. Reich A, Szepietowski JC. Non-analgesic effects of opioids: peripheral opioid receptors as promising targets for future anti-pruritic therapies. Curr Pharm Des. 2012;18(37):6021–4.

    Article  CAS  Google Scholar 

  149. Tey HL, Yosipovitch G. Targeted treatment of pruritus: a look into the future. Br J Dermatol. 2011;165(1):5–17. https://doi.org/10.1111/j.1365-2133.2011.10217.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wikstrom B, Gellert R, Ladefoged SD, Danda Y, Akai M, Ide K, et al. Kappa-opioid system in uremic pruritus: multicenter, randomized, double-blind, placebo-controlled clinical studies. J Am Soc Nephrol. 2005;16(12):3742–7. https://doi.org/10.1681/ASN.2005020152.

    Article  CAS  PubMed  Google Scholar 

  151. Mathur VS, Kumar J, Crawford PW, Hait H, Sciascia T. A multicenter, randomized, double-blind, placebo-controlled trial of nalbuphine ER tablets for uremic pruritus. Am J Nephrol. 2017;46(6):450–8. https://doi.org/10.1159/000484573.

    Article  CAS  PubMed  Google Scholar 

  152. Dawn AG, Yosipovitch G. Butorphanol for treatment of intractable pruritus. J Am Acad Dermatol. 2006;54(3):527–31. https://doi.org/10.1016/j.jaad.2005.12.010.

    Article  PubMed  Google Scholar 

  153. Lim GJ, Ishiuji Y, Dawn A, Harrison B, Kim DW, Atala A, et al. In vitro and in vivo characterization of a novel liposomal butorphanol formulation for treatment of pruritus. Acta Derm Venereol. 2008;88(4):327–30. https://doi.org/10.2340/00015555-0480.

    Article  CAS  PubMed  Google Scholar 

  154. Tioga Pharmaceuticals. Tioga Pharmaceuticals’ asimadoline reduces nighttime itching and improves disease-related quality of life in patients with atopic dermatitis; 2017. https://www.prnewswire.com/news-releases/tioga-pharmaceuticals-asimadoline-reduces-nighttime-itching-and-improves-disease-related-quality-of-life-in-patients-with-atopic-dermatitis-300566114.html.  Accessed 1 Oct 2018.

  155. Ohsawa Y, Hirasawa N. The role of histamine H1 and H4 receptors in atopic dermatitis: from basic research to clinical study. Allergol Int. 2014;63(4):533–42. https://doi.org/10.2332/allergolint.13-RA-0675.

    Article  CAS  PubMed  Google Scholar 

  156. Apfelbacher CJ, van Zuuren EJ, Fedorowicz Z, Jupiter A, Matterne U, Weisshaar E. Oral H1 antihistamines as monotherapy for eczema. Cochrane Database Syst Rev. 2013;28(2):CD007770. https://doi.org/10.1002/14651858.cd007770.pub2.

    Article  Google Scholar 

  157. Dunford PJ, Williams KN, Desai PJ, Karlsson L, McQueen D, Thurmond RL. Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol. 2007;119(1):176–83. https://doi.org/10.1016/j.jaci.2006.08.034.

    Article  CAS  PubMed  Google Scholar 

  158. Rossbach K, Wendorff S, Sander K, Stark H, Gutzmer R, Werfel T, et al. Histamine H4 receptor antagonism reduces hapten-induced scratching behaviour but not inflammation. Exp Dermatol. 2009;18(1):57–63. https://doi.org/10.1111/j.1600-0625.2008.00762.x.

    Article  CAS  PubMed  Google Scholar 

  159. Werfel T, Layton G, Yeadon M, Whitlock L, Osterloh I, Jimenez P, et al. Efficacy and safety of the histamine H4 receptor antagonist ZPL-3893787 in patients with atopic dermatitis. J Allergy Clin Immunol. 2018. https://doi.org/10.1016/j.jaci.2018.07.047.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Campana R, Dzoro S, Mittermann I, Fedenko E, Elisyutina O, Khaitov M, et al. Molecular aspects of allergens in atopic dermatitis. Curr Opin Allergy Clin Immunol. 2017;17(4):269–77. https://doi.org/10.1097/ACI.0000000000000378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Heratizadeh A. Atopic dermatitis: new evidence on the role of allergic inflammation. Curr Opin Allergy Clin Immunol. 2016;16(5):458–64. https://doi.org/10.1097/ACI.0000000000000308.

    Article  CAS  PubMed  Google Scholar 

  162. Navarrete-Dechent C, Perez-Mateluna G, Silva-Valenzuela S, Vera-Kellet C, Borzutzky A. Humoral and cellular autoreactivity to epidermal proteins in atopic dermatitis. Arch Immunol Ther Exp (Warsz). 2016;64(6):435–42. https://doi.org/10.1007/s00005-016-0400-3.

    Article  CAS  Google Scholar 

  163. Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138(2):336–49. https://doi.org/10.1016/j.jaci.2016.06.010.

    Article  CAS  PubMed  Google Scholar 

  164. Leung DY. Role of IgE in atopic dermatitis. Curr Opin Immunol. 1993;5(6):956–62.

    Article  CAS  Google Scholar 

  165. Suarez-Farinas M, Dhingra N, Gittler J, Shemer A, Cardinale I, de Guzman Strong C, et al. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol. 2013;132(2):361–70. https://doi.org/10.1016/j.jaci.2013.04.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Schulman ES. Development of a monoclonal anti-immunoglobulin E antibody (omalizumab) for the treatment of allergic respiratory disorders. Am J Respir Crit Care Med. 2001;164(8 Pt 2):S6–11. https://doi.org/10.1164/ajrccm.164.supplement_1.2103025.

    Article  CAS  PubMed  Google Scholar 

  167. Kawakami T, Blank U. From IgE to omalizumab. J Immunol. 2016;197(11):4187–92. https://doi.org/10.4049/jimmunol.1601476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Iyengar SR, Hoyte EG, Loza A, Bonaccorso S, Chiang D, Umetsu DT, et al. Immunologic effects of omalizumab in children with severe refractory atopic dermatitis: a randomized, placebo-controlled clinical trial. Int Arch Allergy Immunol. 2013;162(1):89–93. https://doi.org/10.1159/000350486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Heil PM, Maurer D, Klein B, Hultsch T, Stingl G. Omalizumab therapy in atopic dermatitis: depletion of IgE does not improve the clinical course—a randomized, placebo-controlled and double blind pilot study. J Dtsch Dermatol Ges. 2010;8(12):990–8. https://doi.org/10.1111/j.1610-0387.2010.07497.x.

    Article  PubMed  Google Scholar 

  170. Wang H-H, Li Y-C, Huang Y-C. Efficacy of omalizumab in patients with atopic dermatitis: a systematic review and meta-analysis. J Allergy Clin Immunol. 2016;138(6):1719–1722.e1. https://doi.org/10.1016/j.jaci.2016.05.038.

    Article  CAS  PubMed  Google Scholar 

  171. Shiratori-Hayashi M, Koga K, Tozaki-Saitoh H, Kohro Y, Toyonaga H, Yamaguchi C, et al. STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nat Med. 2015;21(8):927–31. https://doi.org/10.1038/nm.3912.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha M. Tollefson.

Ethics declarations

Funding

This review was not funded.

Conflict of Interest

Henry L. Nguyen, MD, Katelyn R. Anderson, MD, and Megha M. Tollefson, MD declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.L., Anderson, K.R. & Tollefson, M.M. New and Emerging Therapies for Pediatric Atopic Dermatitis. Pediatr Drugs 21, 239–260 (2019). https://doi.org/10.1007/s40272-019-00342-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-019-00342-w

Navigation