Skip to main content
Log in

Off-Label Use of Sirolimus and Everolimus in a Pediatric Center: A Case Series and Review of the Literature

  • Original Research Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Background

It has been 15 years since sirolimus, an mTOR inhibitor, received Food and Drug Administration approval to prevent acute rejection in kidney transplantation, and 8 years since its analog everolimus acquired the same status. Since then, these drugs have become more and more utilized and their immunosuppressive and antiproliferative properties have been tested in a great variety of clinical conditions, often achieving excellent results. Despite such positive evidence, the on-label indications for these rapalogs are still very restrictive, especially in children.

Aims

The aims of this study were to describe our center’s experience with sirolimus and everolimus in managing rare pediatric conditions for which mTOR inhibitors have been reported as a therapeutic option, although without conclusive approval from regulatory agencies, and to evaluate safety and tolerability of the treatment at the prescribed doses.

Methods

All the subjects who received off-label sirolimus or everolimus at the Pediatric Department of the IRCCS Burlo Garofolo in the last 13 years were included. For each disease found in our case series, we reviewed the current scientific literature.

Results

Off-label treatment with rapalogs was prescribed in 16 children (11 males, 5 females, median age of 9.5 years, range 1–16 years). Seven had immunologic disorders: four autoimmune lymphoproliferative syndrome (ALPS), one multicentric Castleman disease (mCD), one activated PI3K delta kinase syndrome (APDS), and one immunodysregulation with polyendocrinopathy enteropathy X-linked (IPEX). Eight had proliferative disorders or vascular anomalies: one cystic lymphangioma, two Bannayan–Riley–Ruvalcaba syndrome (BRRS), one blue rubber bleb nevus syndrome (BRBNS), two tuberous sclerosis complex (TSC), and one low-flow mixed arterial and venous malformation. One case had congenital hyperinsulinism (CHI). The average dosage administered was 1 mg/m2 for sirolimus and 7 mg/m2 for everolimus. We experienced a good measurable clinical improvement in 14 patients. Nobody experienced serious adverse events (SAEs). The therapy was interrupted in two cases, for lack of efficacy and poor tolerance in one case and for occurrence of bacterial pneumonia in the other one. A review of the literature identified 101 published reports that met our inclusion criteria.

Conclusions

Although use of mTOR inhibitors has been considered to be complicated, our experience shows that, using low dosages, it is possible to obtain relevant clinical improvements, with a good profile of safety and tolerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol. 2008;1(1–4):27–36.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arriola Apelo SI, Neuman JC, Baar EL, Syed FA, Cummings NE, Brar HK, et al. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell. 2016;15(1):28–38.

    Article  CAS  PubMed  Google Scholar 

  3. Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol. 2008;19(7):1411–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tenderich G, Fuchs U, Zittermann A, Muckelbauer R, Berthold HK, Koerfer R. Comparison of sirolimus and everolimus in their effects on blood lipid profiles and haematological parameters in heart transplant recipients. Clin Transplant. 2007;21(4):536–43.

    Article  PubMed  Google Scholar 

  5. Millner L, Rodriguez C, Jortani SA. A clinical approach to solving discrepancies in therapeutic drug monitoring results for patients on sirolimus or tacrolimus: towards personalized medicine, immunosuppression and pharmacogenomics. Clin Chim Acta. 2015;23(450):15–8.

    Article  CAS  Google Scholar 

  6. Calne RY, Collier DS, Lim S, Pollard SG, Samaan A, White DJ, et al. Rapamycin for immunosuppression in organ allografting. Lancet. 1989;2(8656):227.

    Article  CAS  PubMed  Google Scholar 

  7. Bindl L, Torgerson T, Perroni L, Youssef N, Ochs HD, Goulet O, et al. Successful use of the new immune-suppressor sirolimus in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome). J Pediatr. 2005;147(2):256–9.

    Article  PubMed  Google Scholar 

  8. Cayrol J, Garrido Colino C. Use of sirolimus (rapamycin) for treatment of cytopenias and lymphoproliferation linked to autoimmune lymphoproliferative syndrome (ALPS). Two case reports. J Pediatr Hematol Oncol. 2017;39(4):e187–90.

    Article  CAS  PubMed  Google Scholar 

  9. West HJ. Novel precision medicine trial designs: umbrellas and baskets. JAMA Oncol. 2017;3(3):423.

    Article  PubMed  Google Scholar 

  10. Fajgenbaum DC, Uldrick TS, Bagg A, Frank D, Wu D, Srkalovic G, et al. International, evidence-based consensus diagnostic criteria for HHV-8-negative/idiopathic multicentric Castleman disease. Blood. 2017;129(12):1646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee BB, Baumgartner I, Berlien P, Bianchini G, Burrows P, Gloviczki P, et al. Diagnosis and treatment of venous malformations. Consensus document of the International Union of Phlebology (IUP): updated 2013. Int Angiol. 2015;34(2):97–149.

    CAS  PubMed  Google Scholar 

  12. Nocerino A, Valencic E, Loganes C, Pelos G, Tommasini A. Low-dose sirolimus in two cousins with autoimmune lymphoproliferative syndrome-associated infection. Pediatr Int. 2018;60(3):315–7.

    Article  PubMed  Google Scholar 

  13. Taddio A, Faleschini E, Valencic E, Granzotto M, Tommasini A, Lepore L, et al. Medium-term survival without haematopoietic stem cell transplantation in a case of IPEX: insights into nutritional and immunosuppressive therapy. Eur J Pediatr. 2007;166(11):1195–7.

    Article  PubMed  Google Scholar 

  14. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+ CD25+ FoxP3+ regulatory T cells. Blood. 2005;105(12):4743–8.

    Article  CAS  PubMed  Google Scholar 

  15. Minute M, Patti G, Tornese G, Faleschini E, Zuiani C, Ventura A. Sirolimus therapy in congenital hyperinsulinism: a successful experience beyond infancy. Pediatrics. 2015;136(5):e1373–6.

    Article  PubMed  Google Scholar 

  16. Bride KL, Vincent T, Smith-Whitley K, Lambert MP, Bleesing JJ, Seif AE, et al. Sirolimus is effective in relapsed/refractory autoimmune cytopenias: results of a prospective multi-institutional trial. Blood. 2016;127(1):17–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Teachey DT, Greiner R, Seif A, Attiyeh E, Bleesing J, Choi J, et al. Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br J Haematol. 2009;145(1):101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rieux-Laucat F, Le Deist F, Fischer A. Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ. 2003;10(1):124–33.

    Article  CAS  PubMed  Google Scholar 

  19. Yong PL, Russo P, Sullivan KE. Use of sirolimus in IPEX and IPEX-like children. J Clin Immunol. 2008;28(5):581–7.

    Article  CAS  PubMed  Google Scholar 

  20. Heltzer ML, Choi JK, Ochs HD, Sullivan KE, Torgerson TR, Ernst LM. A potential screening tool for IPEX syndrome. Pediatr Dev Pathol. 2007;10(2):98–105.

    Article  CAS  PubMed  Google Scholar 

  21. Zama D, Cocchi I, Masetti R, Specchia F, Alvisi P, Gambineri E, et al. Late-onset of immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) with intractable diarrhea. Ital J Pediatr. 2014;18(40):68.

    Article  Google Scholar 

  22. Charbonnier LM, Janssen E, Chou J, Ohsumi TK, Keles S, Hsu JT, et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol. 2015;135(1):217–27.

    Article  CAS  PubMed  Google Scholar 

  23. Bonatti HJ, Axt J, Hunter EB, Lott SL, Frangoul H, Gillis L, et al. Castleman disease in a pediatric liver transplant recipient: a case report and literature review. Pediatr Transplant. 2012;16(6):E229–34.

    Article  PubMed  Google Scholar 

  24. Rae W, Ramakrishnan KA, Gao Y, Ashton-Key M, Pengelly RJ, Patel SV, et al. Precision treatment with sirolimus in a case of activated phosphoinositide 3-kinase delta syndrome. Clin Immunol. 2016;171:38–40.

    Article  CAS  PubMed  Google Scholar 

  25. Valencic E, Grasso AG, Conversano E, Lucafo M, Piscianz E, Gregori M, et al. Theophylline as a precision therapy in a young girl with PIK3R1 immunodeficiency. J Allergy Clin Immunol Pract. 2018;6(6):2165–7.

    Article  PubMed  Google Scholar 

  26. Szymanowski M, Estebanez MS, Padidela R, Han B, Mosinska K, Stevens A, et al. mTOR inhibitors for the treatment of severe congenital hyperinsulinism: perspectives on limited therapeutic success. J Clin Endocrinol Metab. 2016;101(12):4719–29.

    Article  CAS  PubMed  Google Scholar 

  27. Dastamani A, Guemes M, Walker J, Shah P, Hussain K. Sirolimus precipitating diabetes mellitus in a patient with congenital hyperinsulinaemic hypoglycaemia due to autosomal dominant ABCC8 mutation. J Pediatr Endocrinol Metab. 2017;30(11):1219–22.

    Article  CAS  PubMed  Google Scholar 

  28. Xie C, Patel R, Wu T, Zhu J, Henry T, Bhaskarabhatla M, et al. PI3K/AKT/mTOR hypersignaling in autoimmune lymphoproliferative disease engendered by the epistatic interplay of Sle1b and FASlpr. Int Immunol. 2007;19(4):509–22.

    Article  CAS  PubMed  Google Scholar 

  29. Volkl S, Rensing-Ehl A, Allgauer A, Schreiner E, Lorenz MR, Rohr J, et al. Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome. Blood. 2016;128(2):227–38.

    Article  CAS  PubMed  Google Scholar 

  30. Teachey DT, Obzut DA, Axsom K, Choi JK, Goldsmith KC, Hall J, et al. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS). Blood. 2006;108(6):1965–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bleesing JJ, Straus SE, Fleisher TA. Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr Clin N Am. 2000;47(6):1291–310.

    Article  CAS  Google Scholar 

  32. Knoll GA, Kokolo MB, Mallick R, Beck A, Buenaventura CD, Ducharme R, et al. Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data. BMJ. 2014;24(349):g6679.

    Article  Google Scholar 

  33. Yang SB, Lee HY, Young DM, Tien AC, Rowson-Baldwin A, Shu YY, et al. Rapamycin induces glucose intolerance in mice by reducing islet mass, insulin content, and insulin sensitivity. J Mol Med (Berl). 2012;90(5):575–85.

    Article  CAS  PubMed  Google Scholar 

  34. Demirbilek H, Hussain K. Congenital hyperinsulinism: diagnosis and treatment update. J Clin Res Pediatr Endocrinol. 2017;9(Suppl 2):69–87.

    PubMed  PubMed Central  Google Scholar 

  35. Klawitter J, et al. Everolimus and sirolimus in transplantation-related but different. Expert Opin Drug Saf. 2015;14(7):1055–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanchez-Fructuoso AI, Ruiz JC, Perez-Flores I, Gomez Alamillo C, Calvo Romero N, Arias M. Comparative analysis of adverse events requiring suspension of mTOR inhibitors: everolimus versus sirolimus. Transplant Proc. 2010;42(8):3050–2.

    Article  CAS  PubMed  Google Scholar 

  37. Piao SG, Bae SK, Lim SW, Song JH, Chung BH, Choi BS, et al. Drug interaction between cyclosporine and mTOR inhibitors in experimental model of chronic cyclosporine nephrotoxicity and pancreatic islet dysfunction. Transplantation. 2012;93(4):383–9.

    Article  CAS  PubMed  Google Scholar 

  38. Tao JJ, Schram AM, Hyman DM. Basket studies: redefining clinical trials in the era of genome-driven oncology. Annu Rev Med. 2018;29(69):319–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by the IRCCS Burlo Garofolo, RC 24/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Tommasini.

Ethics declarations

Conflict of interest

Dr Bevacqua has nothing to disclose. Dr Baldo has nothing to disclose. Dr Pastore reports non-financial support from Abbvie, outside the submitted work. Dr Valencic has nothing to disclose. Dr Tommasini reports non-financial support from Novartis pharma, Kedrion, Shire, and CLS Behring, outside the submitted work. Dr Maestro has nothing to disclose. Dr Rabusin has nothing to disclose. Dr Arbo has nothing to disclose. Dr Barbi has nothing to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bevacqua, M., Baldo, F., Pastore, S. et al. Off-Label Use of Sirolimus and Everolimus in a Pediatric Center: A Case Series and Review of the Literature. Pediatr Drugs 21, 185–193 (2019). https://doi.org/10.1007/s40272-019-00337-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-019-00337-7

Navigation