Skip to main content
Log in

Relationship Amongst Vitamin K Status, Vitamin K Antagonist Use and Osteoarthritis: A Review

  • Current Opinion
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Vitamin K is essential for the carboxylation of the vitamin K-dependent proteins that are responsible for the suppression of matrix calcification. The use of vitamin K antagonists (VKAs) in patients with cardiovascular diseases could affect protein carboxylation and lead to the development of osteoarthritis (OA). This review aims to summarise the current evidence for the relationship between VKAs and OA. The literature search revealed that in observation studies, good vitamin K status, as reflected by the circulating level or protein carboxylation status of vitamin K, is associated positively with improved joint structural and functional indices and negatively associated with OA incidence. By contrast, in limited retrospective and prospective studies, the use of VKAs is associated positively with OA occurrence and knee/hip replacement. Pharmacological interactions between VKAs and various OA therapeutic agents exist and require careful monitoring and dosing. In conclusion, further epidemiological studies are warranted to verify the relationship between VKA use and OA to strengthen the evidence. Given that VKA use exerts potentially negative effects on joint health, intervention is required to protect the quality of life and mobility of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Institute for Health Metrics and Evaluation. Osteoarthritis—Level 3 cause 2020. http://www.healthdata.org/results/gbd_summaries/2019/osteoarthritis-level-3-cause.

  2. Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine. 2020;29-30:100587. https://doi.org/10.1016/j.eclinm.2020.100587

  3. Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;5(1):16044. https://doi.org/10.1038/boneres.2016.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chow YY, Chin KY. The role of inflammation in the pathogenesis of osteoarthritis. Mediat Inflamm. 2020;2020:8293921. https://doi.org/10.1155/2020/8293921.

    Article  CAS  Google Scholar 

  5. Chang L, Yao H, Yao Z, Ho KK, Ong MT, Dai B, et al. Comprehensive analysis of key genes, signaling pathways and miRNAs in human knee osteoarthritis: based on bioinformatics. Front Pharmacol. 2021;12: 730587. https://doi.org/10.3389/fphar.2021.730587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. World Health Organization. Cardiovascular diseases (CVDs). 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

  7. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M, Bayo Jimenez MT, et al. Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxid Med Cell Longev. 2019;2019:7092151. https://doi.org/10.1155/2019/7092151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mathieu S, Couderc M, Tournadre A, Soubrier M. Cardiovascular profile in osteoarthritis: a meta-analysis of cardiovascular events and risk factors. Joint Bone Spine. 2019;86(6):679–84. https://doi.org/10.1016/j.jbspin.2019.06.013.

    Article  PubMed  Google Scholar 

  10. Hall AJ, Stubbs B, Mamas MA, Myint PK, Smith TO. Association between osteoarthritis and cardiovascular disease: systematic review and meta-analysis. Eur J Prev Cardiol. 2016;23(9):938–46. https://doi.org/10.1177/2047487315610663.

    Article  PubMed  Google Scholar 

  11. Corsi M, Alvarez C, Callahan LF, Cleveland RJ, Golightly YM, Jordan JM, et al. Contributions of symptomatic osteoarthritis and physical function to incident cardiovascular disease. BMC Musculoskelet Disord. 2018;19(1):393. https://doi.org/10.1186/s12891-018-2311-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Atiquzzaman M, Karim ME, Kopec J, Wong H, Anis AH. Role of nonsteroidal antiinflammatory drugs in the association between osteoarthritis and cardiovascular diseases: a longitudinal study. Arthritis Rheumatol. 2019;71(11):1835–43. https://doi.org/10.1002/art.41027.

    Article  CAS  PubMed  Google Scholar 

  13. Haj-Mirzaian A, Mohajer B, Guermazi A, Conaghan PG, Lima JAC, Blaha MJ, et al. Statin use and knee osteoarthritis outcome measures according to the presence of Heberden nodes: results from the osteoarthritis initiative. Radiology. 2019;293(2):396–404. https://doi.org/10.1148/radiol.2019190557.

    Article  PubMed  Google Scholar 

  14. Donaldson CJ, Harrington DJ. Therapeutic warfarin use and the extrahepatic functions of vitamin K-dependent proteins. Br J Biomed Sci. 2017;74(4):163–9. https://doi.org/10.1080/09674845.2017.1336854.

    Article  CAS  PubMed  Google Scholar 

  15. Lutsey PL, Walker RF, MacLehose RF, Alonso A, Adam TJ, Zakai NA. Direct oral anticoagulants and warfarin for venous thromboembolism treatment: trends from 2012 to 2017. Res Pract Thromb Haemost. 2019;3(4):668–73. https://doi.org/10.1002/rth2.12222.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Semakula JR, Mouton JP, Jorgensen A, Hutchinson C, Allie S, Semakula L, et al. A cross-sectional evaluation of five warfarin anticoagulation services in Uganda and South Africa. PLoS ONE. 2020;15(1): e0227458. https://doi.org/10.1371/journal.pone.0227458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siltari A, Vapaatalo H. Vascular calcification, vitamin k and warfarin therapy—possible or plausible connection? Basic Clin Pharmacol Toxicol. 2018;122(1):19–24. https://doi.org/10.1111/bcpt.12834.

    Article  CAS  PubMed  Google Scholar 

  18. Yokoyama S, Ieda S, Nagano M, Nakagawa C, Iwase M, Hosomi K, et al. Association between oral anticoagulants and osteoporosis: real-world data mining using a multi-methodological approach. Int J Med Sci. 2020;17(4):471–9. https://doi.org/10.7150/ijms.39523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ballal P, Peloquin C, Boer CG, Neogi T. Warfarin use and risk of knee and hip replacements. Ann Rheum Dis. 2021;80(5):605–9. https://doi.org/10.1136/annrheumdis-2020-219646.

    Article  CAS  PubMed  Google Scholar 

  20. Boer CG, Szilagyi I, Nguyen NL, Neogi T, Meulenbelt I, Ikram MA, et al. Vitamin K antagonist anticoagulant usage is associated with increased incidence and progression of osteoarthritis. Ann Rheum Dis. 2021;80(5):598–604. https://doi.org/10.1136/annrheumdis-2020-219483.

    Article  CAS  PubMed  Google Scholar 

  21. Yan JF, Qin WP, Xiao BC, Wan QQ, Tay FR, Niu LN, et al. Pathological calcification in osteoarthritis: an outcome or a disease initiator? Biol Rev Camb Philos Soc. 2020;95(4):960–85. https://doi.org/10.1111/brv.12595.

    Article  PubMed  Google Scholar 

  22. Nalbant S, Martinez JA, Kitumnuaypong T, Clayburne G, Sieck M, Schumacher HR Jr. Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthr Cartil. 2003;11(1):50–4. https://doi.org/10.1053/joca.2002.0861.

    Article  CAS  Google Scholar 

  23. Robier C, Neubauer M, Fritz K, Lippitz P, Stettin M, Rainer F. The detection of calcium pyrophosphate crystals in sequential synovial fluid examinations of patients with osteoarthritis: once positive, always positive. Clin Rheumatol. 2013;32(5):671–2. https://doi.org/10.1007/s10067-012-2147-5.

    Article  PubMed  Google Scholar 

  24. Frallonardo P, Oliviero F, Peruzzo L, Tauro L, Scanu A, Galozzi P, et al. Detection of calcium crystals in knee osteoarthritis synovial fluid: a comparison between polarized light and scanning electron microscopy. J Clin Rheumatol. 2016;22(7):369–71. https://doi.org/10.1097/rhu.0000000000000416.

    Article  PubMed  Google Scholar 

  25. Frallonardo P, Ramonda R, Peruzzo L, Scanu A, Galozzi P, Tauro L, et al. Basic calcium phosphate and pyrophosphate crystals in early and late osteoarthritis: relationship with clinical indices and inflammation. Clin Rheumatol. 2018;37(10):2847–53. https://doi.org/10.1007/s10067-018-4166-3.

    Article  PubMed  Google Scholar 

  26. Stack J, McCarthy GM. Cartilage calcification and osteoarthritis: a pathological association? Osteoarthr Cartil. 2020;28(10):1301–2. https://doi.org/10.1016/j.joca.2020.06.010.

    Article  CAS  Google Scholar 

  27. Hubert J, Beil FT, Rolvien T, Butscheidt S, Hischke S, Püschel K, et al. Cartilage calcification is associated with histological degeneration of the knee joint: a highly prevalent, age-independent systemic process. Osteoarthr Cartil. 2020;28(10):1351–61. https://doi.org/10.1016/j.joca.2020.04.020.

    Article  CAS  Google Scholar 

  28. Hubert J, Weiser L, Hischke S, Uhlig A, Rolvien T, Schmidt T, et al. Cartilage calcification of the ankle joint is associated with osteoarthritis in the general population. BMC Musculoskelet Disord. 2018;19(1):169. https://doi.org/10.1186/s12891-018-2094-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ea HK, Nguyen C, Bazin D, Bianchi A, Guicheux J, Reboul P, et al. Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum. 2011;63(1):10–8. https://doi.org/10.1002/art.27761.

    Article  CAS  PubMed  Google Scholar 

  30. Fu X, Wu J, Cheng X, Deng R, Wang W, Wang X, et al. Effects of gamma-glutamyl carboxylase gene overexpression on the differentiation of chondrocytes from osteoarthritis rabbits. Int J Clin Exp Med. 2017;10(6):9096–102.

    Google Scholar 

  31. Wallin R, Schurgers LJ, Loeser RF. Biosynthesis of the vitamin K-dependent matrix Gla protein (MGP) in chondrocytes: a fetuin-MGP protein complex is assembled in vesicles shed from normal but not from osteoarthritic chondrocytes. Osteoarthr Cartil. 2010;18(8):1096–103. https://doi.org/10.1016/j.joca.2010.05.013.

    Article  CAS  Google Scholar 

  32. Bjørklund G, Svanberg E, Dadar M, Card DJ, Chirumbolo S, Harrington DJ, et al. The role of matrix Gla protein (MGP) in vascular calcification. Curr Med Chem. 2020;27(10):1647–60. https://doi.org/10.2174/0929867325666180716104159.

    Article  CAS  PubMed  Google Scholar 

  33. Viegas CSB, Costa RM, Santos L, Videira PA, Silva Z, Araújo N, et al. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0177829.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cavaco S, Viegas CS, Rafael MS, Ramos A, Magalhães J, Blanco FJ, et al. Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell Mol Life Sci. 2016;73(5):1051–65. https://doi.org/10.1007/s00018-015-2033-9.

    Article  CAS  PubMed  Google Scholar 

  35. Roberts NB, Holding JD, Walsh HP, Klenerman L, Helliwell T, King D, et al. Serial changes in serum vitamin K1, triglyceride, cholesterol, osteocalcin and 25-hydroxyvitamin D3 in patients after hip replacement for fractured neck of femur or osteoarthritis. Eur J Clin Invest. 1996;26(1):24–9.

    Article  CAS  Google Scholar 

  36. Bing W, Feng L. Attenuate synovial fluid uncarboxylated matrix Gla-protein (ucMGP) concentrations are linked with radiographic progression in knee psteoarthritis. Adv Clin Exp Med. 2015;24(6):1013–7. https://doi.org/10.17219/acem/33824.

    Article  PubMed  Google Scholar 

  37. Rafael MS, Cavaco S, Viegas CS, Santos S, Ramos A, Willems BA, et al. Insights into the association of Gla-rich protein and osteoarthritis, novel splice variants and gamma-carboxylation status. Mol Nutr Food Res. 2014;58(8):1636–46. https://doi.org/10.1002/mnfr.201300941.

    Article  CAS  PubMed  Google Scholar 

  38. Silaghi CN, Fodor D, Cristea V, Craciun AM. Synovial and serum levels of uncarboxylated matrix Gla-protein (ucMGP) in patients with arthritis. Clin Chem Lab Med. 2011;50(1):125–8. https://doi.org/10.1515/cclm.2011.713.

    Article  PubMed  Google Scholar 

  39. Neogi T, Booth SL, Zhang YQ, Jacques PF, Terkeltaub R, Aliabadi P, et al. Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheum. 2006;54(4):1255–61. https://doi.org/10.1002/art.21735.

    Article  CAS  PubMed  Google Scholar 

  40. Oka H, Akune T, Muraki S, En-yo Y, Yoshida M, Saika A, et al. Association of low dietary vitamin K intake with radiographic knee osteoarthritis in the Japanese elderly population: dietary survey in a population-based cohort of the ROAD study. J Orthop Sci. 2009;14(6):687–92. https://doi.org/10.1007/s00776-009-1395-y.

    Article  CAS  PubMed  Google Scholar 

  41. Muraki S, Akune T, En-Yo Y, Yoshida M, Tanaka S, Kawaguchi H, et al. Association of dietary intake with joint space narrowing and osteophytosis at the knee in Japanese men and women: the ROAD study. Mod Rheumatol. 2014;24(2):236–42. https://doi.org/10.3109/14397595.2013.854055.

    Article  CAS  PubMed  Google Scholar 

  42. Ishii Y, Noguchi H, Takeda M, Sato J, Yamamoto N, Wakabayashi H, et al. Distribution of vitamin K2 in subchondral bone in osteoarthritic knee joints. Knee Surg Sports Traumatol Arthrosc. 2013;21(8):1813–8. https://doi.org/10.1007/s00167-012-2239-4.

    Article  PubMed  Google Scholar 

  43. Naito K, Watari T, Obayashi O, Katsube S, Nagaoka I, Kaneko K. Relationship between serum undercarboxylated osteocalcin and hyaluronan levels in patients with bilateral knee osteoarthritis. Int J Mol Med. 2012;29(5):756–60. https://doi.org/10.3892/ijmm.2012.897.

    Article  CAS  PubMed  Google Scholar 

  44. Misra D, Booth SL, Crosier MD, Ordovas JM, Felson DT, Neogi T. Matrix Gla protein polymorphism, but not concentrations, is associated with radiographic hand osteoarthritis. J Rheumatol. 2011;38(9):1960–5. https://doi.org/10.3899/jrheum.100985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shea MK, Kritchevsky SB, Hsu FC, Nevitt M, Booth SL, Kwoh CK, et al. The association between vitamin K status and knee osteoarthritis features in older adults: the Health, Aging and Body Composition Study. Osteoarthr Cartil. 2015;23(3):370–8. https://doi.org/10.1016/j.joca.2014.12.008.

    Article  CAS  Google Scholar 

  46. Shea MK, Kritchevsky SB, Loeser RF, Booth SL. Vitamin K status and mobility limitation and disability in older adults: the health, aging, and body composition study. J Gerontol A Biol Sci Med Sci. 2019. https://doi.org/10.1093/gerona/glz108.

    Article  PubMed Central  Google Scholar 

  47. Misra D, Booth SL, Tolstykh I, Felson DT, Nevitt MC, Lewis CE, et al. Vitamin K deficiency is associated with incident knee osteoarthritis. Am J Med. 2013;126(3):243–8. https://doi.org/10.1016/j.amjmed.2012.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shea MK, Loeser RF, McAlindon TE, Houston DK, Kritchevsky SB, Booth SL. Association of Vitamin K status combined with vitamin D status and lower-extremity function: a prospective analysis of two knee osteoarthritis cohorts. Arthritis Care Res (Hoboken). 2018;70(8):1150–9. https://doi.org/10.1002/acr.23451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. El-Brashy AEWS, El-Tanawy RM, Hassan WA, Shaban HM, Bhnasawy MM. Potential role of vitamin K in radiological progression of early knee osteoarthritis patients. Egypt Rheumatol. 2016;38(3):217–23. https://doi.org/10.1016/j.ejr.2016.03.001.

    Article  Google Scholar 

  50. Neogi T, Felson DT, Sarno R, Booth SL. Vitamin K in hand osteoarthritis: results from a randomised clinical trial. Ann Rheum Dis. 2008;67(11):1570–3. https://doi.org/10.1136/ard.2008.094771.

    Article  CAS  PubMed  Google Scholar 

  51. Arden NK, Cro S, Sheard S, Doré CJ, Bara A, Tebbs SA, et al. The effect of vitamin D supplementation on knee osteoarthritis, the VIDEO study: a randomised controlled trial. Osteoarthr Cartil. 2016;24(11):1858–66. https://doi.org/10.1016/j.joca.2016.05.020.

    Article  CAS  Google Scholar 

  52. Jin X, Jones G, Cicuttini F, Wluka A, Zhu Z, Han W, et al. Effect of vitamin D supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis: a randomized clinical trial. JAMA. 2016;315(10):1005–13. https://doi.org/10.1001/jama.2016.1961.

    Article  CAS  PubMed  Google Scholar 

  53. Booth SL, Dallal G, Shea MK, Gundberg C, Peterson JW, Dawson-Hughes B. Effect of vitamin K supplementation on bone loss in elderly men and women. J Clin Endocrinol Metab. 2008;93(4):1217–23. https://doi.org/10.1210/jc.2007-2490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chin K-Y. The relationship between vitamin K and osteoarthritis: a review of current evidence. Nutrients. 2020;12(5):1208.

    Article  CAS  Google Scholar 

  55. He N, Fang Z, Li X, Zhai S. Correspondence on ‘Warfarin use and risk of knee and hip replacements.’ Ann Rheum Dis. 2021. https://doi.org/10.1136/annrheumdis-2021-220819.

    Article  PubMed  Google Scholar 

  56. Weber J. Epidemiology of adverse reactions to nonsteroidal anti-inflammatory drugs. In: Rainsford K, Velo G, editors. Side-effects of anti-inflammatory drugs, advances in inflammation research. New York: Raven Press; 1984. p. 1–7.

    Google Scholar 

  57. Sangviroon A, Panomvana D, Tassaneeyakul W, Namchaisiri J. Pharmacokinetic and pharmacodynamic variation associated with VKORC1 and CYP2C9 polymorphisms in Thai patients taking warfarin. Drug Metab Pharmacokinet. 2010;25(6):531–8. https://doi.org/10.2133/dmpk.dmpk-10-rg-059.

    Article  CAS  PubMed  Google Scholar 

  58. Al-Saadi HM, Pang K-L, Ima-Nirwana S, Chin K-Y. Multifaceted protective role of glucosamine against osteoarthritis: review of its molecular mechanisms. Sci Pharm. 2019;87(4):34.

    Article  CAS  Google Scholar 

  59. Bruyère O, Burlet N, Delmas PD, Rizzoli R, Cooper C, Reginster J-Y. Evaluation of symptomatic slow-acting drugs in osteoarthritis using the GRADE system. BMC Musculoskelet Disord. 2008;9(1):165. https://doi.org/10.1186/1471-2474-9-165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rozenfeld V, Crain JL, Callahan AK. Possible augmentation of warfarin effect by glucosamine-chondroitin. Am J Health Syst Pharm. 2004;61(3):306–7. https://doi.org/10.1093/ajhp/61.3.306.

    Article  PubMed  Google Scholar 

  61. Knudsen JF, Sokol GH. Potential glucosamine-warfarin interaction resulting in increased international normalized ratio: case report and review of the literature and MedWatch database. Pharmacotherapy. 2008;28(4):540–8. https://doi.org/10.1592/phco.28.4.540.

    Article  CAS  PubMed  Google Scholar 

  62. Pang K-L, Ghafar NA, Soelaiman IN, Chin K-Y. Protective effects of annatto tocotrienol and palm tocotrienol-rich fraction on chondrocytes exposed to monosodium iodoacetate. Appl Sci. 2021;11(20):9643.

    Article  Google Scholar 

  63. Al-Saadi HM, Chin K-Y, Ahmad F, Mohd Ramli ES, Arlamsyah AM, Japar Sidik FZ, et al. Effects of palm tocotrienol-rich fraction alone or in combination with glucosamine sulphate on grip strength, cartilage structure and joint remodelling markers in a rat model of osteoarthritis. Appl Sci. 2021;11(18):8577. https://doi.org/10.3390/app11188577.

    Article  CAS  Google Scholar 

  64. Chin K-Y, Ima-Nirwana S. The role of vitamin E in preventing and treating osteoarthritis—a review of the current evidence. Front Pharmacol. 2018;9:946. https://doi.org/10.3389/fphar.2018.00946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chin K-Y, Wong SK, Japar Sidik FZ, Abdul Hamid J, Abas NH, Mohd Ramli ES, et al. The effects of annatto tocotrienol supplementation on cartilage and subchondral bone in an animal model of osteoarthritis induced by monosodium iodoacetate. Int J Environ Res Public Health. 2019;16(16):2897.

    Article  CAS  Google Scholar 

  66. Pastori D, Carnevale R, Cangemi R, Saliola M, Nocella C, Bartimoccia S, et al. Vitamin E serum levels and bleeding risk in patients receiving oral anticoagulant therapy: a retrospective cohort study. J Am Heart Assoc. 2013;2(6): e000364-e. https://doi.org/10.1161/JAHA.113.000364.

    Article  CAS  Google Scholar 

  67. Kent AP, Brueckmann M, Fraessdorf M, Connolly SJ, Yusuf S, Eikelboom JW, et al. Concomitant oral anticoagulant and nonsteroidal anti-inflammatory drug therapy in patients with atrial fibrillation. J Am Coll Cardiol. 2018;72(3):255–67. https://doi.org/10.1016/j.jacc.2018.04.063.

    Article  CAS  PubMed  Google Scholar 

  68. Dalgaard F, Mulder H, Wojdyla DM, Lopes RD, Held C, Alexander JH, et al. Patients with atrial fibrillation taking nonsteroidal anti-inflammatory drugs and oral anticoagulants in the ARISTOTLE trial. Circulation. 2020;141(1):10–20. https://doi.org/10.1161/circulationaha.119.041296.

    Article  CAS  PubMed  Google Scholar 

  69. Mahé I, Bertrand N, Drouet L, Bal DitSollier C, Simoneau G, Mazoyer E, et al. Interaction between paracetamol and warfarin in patients: a double-blind, placebo-controlled, randomized study. Haematologica. 2006;91(12):1621–7.

    PubMed  Google Scholar 

  70. Jones IA, Togashi R, Wilson ML, Heckmann N, Vangsness CT. Intra-articular treatment options for knee osteoarthritis. Nat Rev Rheumatol. 2019;15(2):77–90. https://doi.org/10.1038/s41584-018-0123-4.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Isidori AM, Minnetti M, Sbardella E, Graziadio C, Grossman AB. Mechanisms in endocrinology: the spectrum of haemostatic abnormalities in glucocorticoid excess and defect. Eur J Endocrinol. 2015;173(3):R101–13. https://doi.org/10.1530/eje-15-0308.

    Article  CAS  PubMed  Google Scholar 

  72. Kompel AJ, Roemer FW, Murakami AM, Diaz LE, Crema MD, Guermazi A. Intra-articular corticosteroid injections in the hip and knee: perhaps not as safe as we thought? Radiology. 2019;293(3):656–63. https://doi.org/10.1148/radiol.2019190341.

    Article  PubMed  Google Scholar 

  73. Dempfle CE. Direct oral anticoagulants—pharmacology, drug interactions, and side effects. Semin Hematol. 2014;51(2):89–97. https://doi.org/10.1053/j.seminhematol.2014.03.005.

    Article  CAS  PubMed  Google Scholar 

  74. Amin A, Keshishian A, Trocio J, Dina O, Le H, Rosenblatt L, et al. Risk of stroke/systemic embolism, major bleeding and associated costs in non-valvular atrial fibrillation patients who initiated apixaban, dabigatran or rivaroxaban compared with warfarin in the United States Medicare population. Curr Med Res Opin. 2017;33(9):1595–604. https://doi.org/10.1080/03007995.2017.1345729.

    Article  CAS  PubMed  Google Scholar 

  75. Gupta K, Trocio J, Keshishian A, Zhang Q, Dina O, Mardekian J, et al. Effectiveness and safety of direct oral anticoagulants compared to warfarin in treatment naïve non-valvular atrial fibrillation patients in the US Department of defense population. BMC Cardiovasc Disord. 2019;19(1):142. https://doi.org/10.1186/s12872-019-1116-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Monaco L, Biagi C, Conti V, Melis M, Donati M, Venegoni M, et al. Safety profile of the direct oral anticoagulants: an analysis of the WHO database of adverse drug reactions. Br J Clin Pharmacol. 2017;83(7):1532–43. https://doi.org/10.1111/bcp.13234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shao JB, Ni CF, Duan PF, Jin YH. Preventive effects of different drugs on asymptomatic lower extremities deep venous thrombosis after artificial joint replacement: a mixed treatment comparison. Am J Ther. 2019;26(1):e45–53. https://doi.org/10.1097/mjt.0000000000000438.

    Article  PubMed  Google Scholar 

  78. Liu D, Dan M, Martinez Martos S, Beller E. Blood management strategies in total knee arthroplasty. Knee Surg Relat Res. 2016;28(3):179–87. https://doi.org/10.5792/ksrr.2016.28.3.179.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Haighton M, Kempen DHR, Wolterbeek N, Marting LN, van Dijk M, Veen RMR. Bridging therapy for oral anticoagulation increases the risk for bleeding-related complications in total joint arthroplasty. J Orthop Surg Res. 2015;10:145. https://doi.org/10.1186/s13018-015-0285-6.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gibon E, Barut N, Anract P, Courpied JP, Hamadouche M. Ninety-day morbidity in patients undergoing primary TKA with discontinuation of warfarin and bridging with LMWH. J Arthroplasty. 2014;29(6):1185–8. https://doi.org/10.1016/j.arth.2013.12.029.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia for funding them via the Research University Grant (GUP-2020-021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok-Yong Chin.

Ethics declarations

Funding

The authors are supported by Universiti Kebangsaan Malaysia via the Research University Grant (GUP-2020-021).

Conflict of interest

The authors declare no conflict of interest.

Author contributions

All authors were involved in the conceptualisation of the review. K-YC performed the literature review and drafted the manuscript. K-LP, SKW, DCHC and QHMS critically reviewed and provided intellectual input on the manuscript. All authors read and approved the final manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, KY., Pang, KL., Wong, S.K. et al. Relationship Amongst Vitamin K Status, Vitamin K Antagonist Use and Osteoarthritis: A Review. Drugs Aging 39, 487–504 (2022). https://doi.org/10.1007/s40266-022-00945-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-022-00945-y

Navigation