Skip to main content
Log in

Chemotherapy-Induced Neutropenia as a Prognostic and Predictive Marker of Outcomes in Solid-Tumor Patients

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Chemotherapy-induced neutropenia (CIN) is one of the most common side effects seen in cancer patients. As an adverse event, it is deemed undesirable since it often constitutes a dose-limiting toxicity for cytotoxic agents leading to treatment delays and/or dose reductions. It is also associated with a financial cost component from diagnostic work-up and treatment of patients with chemotherapy-induced febrile neutropenia (CIFN). Neutropenia is commonly accompanied by a decrease in other hematopoietic lineages (anemia and/or thrombocytopenia). Dosing of chemotherapeutic agents is based on the severity of adverse effects seen. Depending on the degree of neutropenia, chemotherapeutic agents may be put on hold until count recovery and growth factor support might be added to allow for dosing as scheduled. However, neutropenia appears to be more than just an adverse event. While CIFN by itself constitutes an adverse event, the appearance of just CIN is not necessarily a marker of poor outcome. In fact, it rather appears to be a surrogate marker of response and/or survival in patients treated with cytotoxic regimens. Here we present evidence in different tumor types treated with different regimens on the role CIN plays as a marker for improved outcomes. If CIN is a surrogate prognostic and/or potentially predictive marker of response, chemotherapy doses may need to be escalated to achieve neutropenia. In addition, instead of reducing treatment doses for safety concerns, the addition of growth factor support and alternative dosing schemes may be strategies to consider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jacobs VR, Mayer SC, Paessens B, Anker G, Schwarz-Boeger U, Paepke S, et al. Prospective study comparing hospital costs and DRG reimbursement of inpatient treatment of febrile neutropenia during adjuvant anthracycline-based CTX for primary breast cancer. J Clin Oncol. 2009;27(15_suppl):e11570.

    Google Scholar 

  2. Bottsford-Miller J, Choi HJ, Dalton HJ, Stone RL, Cho MS, Haemmerle M, et al. Differential platelet levels affect response to taxane-based therapy in ovarian cancer. Clin Cancer Res. 2015;21(3):602–10.

    Article  PubMed  CAS  Google Scholar 

  3. Mayer RJ, Van Cutsem E, Falcone A, Yoshino T, Garcia-Carbonero R, Mizunuma N, et al. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med. 2015;372(20):1909–19.

    Article  PubMed  Google Scholar 

  4. Kasi PM, Kotani D, Cecchini M, Shitara K, Ohtsu A, Ramanathan RK, et al. Chemotherapy induced neutropenia at 1-month mark is a predictor of overall survival in patients receiving TAS-102 for refractory metastatic colorectal cancer: a cohort study. BMC Cancer. 2016;16:467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hamauchi S, Yamazaki K, Masuishi T, Kito Y, Komori A, Tsushima T, et al. Neutropenia as a predictive factor in metastatic colorectal cancer treated with TAS-102. Clin Colorectal Cancer. 2017;16(1):51–7. https://doi.org/10.1016/j.clcc.2016.07.005.

    Article  PubMed  Google Scholar 

  6. Sunaga T, Suzuki S, Kogo M, Kurihara T, Kaji S, Koike N, et al. The association between neutropenia and prognosis in stage III colorectal cancer patients receiving adjuvant chemotherapy. Eur J Cancer Care (Engl). 2014;23(3):394–400.

    Article  CAS  Google Scholar 

  7. Innominato PF, Giacchetti S, Moreau T, Smaaland R, Focan C, Bjarnason GA, et al. Prediction of survival by neutropenia according to delivery schedule of oxaliplatin-5-fluorouracil-leucovorin for metastatic colorectal cancer in a randomized international trial (EORTC 05963). Chronobiol Int. 2011;28(7):586–600.

    Article  PubMed  CAS  Google Scholar 

  8. Innominato PF, Giacchetti S, Smaaland R, Focan CN, Garufi C, Bjarnason GA, et al. Chemotherapy-induced neutropenia association with survival in metastatic colorectal cancer (MCC): schedule dependency. J Clin Oncol. 2011;29(4_suppl):454.

    Article  Google Scholar 

  9. Shitara K, Matsuo K, Takahari D, Yokota T, Ura T, Muro K. Neutropenia as a prognostic factor in metastatic colorectal cancer patients undergoing chemotherapy with first-line FOLFOX. J Clin Oncol. 2009;27(15_suppl):4115.

    Google Scholar 

  10. Shitara K, Yuki S, Tahahari D, Nakamura M, Kondo C, Tsuda T, et al. Randomised phase II study comparing dose-escalated weekly paclitaxel vs standard-dose weekly paclitaxel for patients with previously treated advanced gastric cancer. Br J Cancer. 2014;110(2):271–7.

    Article  PubMed  CAS  Google Scholar 

  11. Chen Z, Chen W, Wang J, Zhu M, Zhuang Z. Pretreated baseline neutrophil count and chemotherapy-induced neutropenia may be conveniently available as prognostic biomarkers in advanced gastric cancer. Intern Med J. 2015;45(8):854–9.

    Article  PubMed  CAS  Google Scholar 

  12. Ikagawa M, Kimura M, Iwai M, Usami E, Yoshimura T, Yasuda K. Neutropenia as a prognostic factor and safety of second-line therapy with S-1 for advanced or recurrent pancreatic cancer. Mol Clin Oncol. 2016;5(3):283–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kurihara T, Kogo M, Ishii M, Shimada K, Yoneyama K, Kitamura K, et al. Chemotherapy-induced neutropenia as a prognostic factor in patients with unresectable pancreatic cancer. Cancer Chemother Pharmacol. 2015;76(6):1217–24.

    Article  PubMed  CAS  Google Scholar 

  14. Okuyama H, Mitsunaga S, Nakachi K, Ohno I, Shimizu S, Takahashi H, et al. Association of interleukin-6 levels and neutropenia during gemcitabine monotherapy for advanced pancreatic cancer. J Clin Oncol. 2011;29(4):178.

    Article  Google Scholar 

  15. Liu R, Huang M, Zhao X, Peng W, Sun S, Cao J, et al. Neutropenia predicts better prognosis in patients with metastatic gastric cancer on a combined epirubicin, oxaliplatin and 5-fluorouracil regimen. Oncotarget. 2015;6(36):39018–27.

    PubMed  PubMed Central  Google Scholar 

  16. Shitara K, Matsuo K, Takahari D, Yokota T, Shibata T, Ura T, et al. Neutropenia as a prognostic factor in advanced gastric cancer patients undergoing second-line chemotherapy with weekly paclitaxel. Ann Oncol Off J Eur Soc Med Oncol. 2010;21(12):2403–9.

    Article  CAS  Google Scholar 

  17. Konishi H, Fujiwara H, Shiozaki A, Hiramoto H, Kosuga T, Komatsu S, et al. Effects of neutropenia and histological responses in esophageal squamous cell carcinoma with neo-adjuvant chemotherapy. Int J Clin Oncol. 2016;21(1):95–101.

    Article  PubMed  CAS  Google Scholar 

  18. Ma RM, Chen CZ, Zhang W, You J, Huang DP, Guo GL. Prognostic value of chemotherapy-induced neutropenia at the first cycle in invasive breast cancer. Medicine (Baltim). 2016;95(13):e3240.

    Article  CAS  Google Scholar 

  19. Han Y, Yu Z, Wen S, Zhang B, Cao X, Wang X. Prognostic value of chemotherapy-induced neutropenia in early-stage breast cancer. Breast Cancer Res Treat. 2012;131(2):483–90.

    Article  PubMed  CAS  Google Scholar 

  20. Mitchell S, Li X, Woods M, Garcia J, Hebard-Massey K, Barron R, et al. Comparative effectiveness of granulocyte colony-stimulating factors to prevent febrile neutropenia and related complications in cancer patients in clinical practice: a systematic review. J Oncol Pharm Pract. 2016;22(5):702–16.

    Article  PubMed  Google Scholar 

  21. Tewari KS, Java JJ, Gatcliffe TA, Bookman MA, Monk BJ. Chemotherapy-induced neutropenia as a biomarker of survival in advanced ovarian carcinoma: an exploratory study of the gynecologic oncology group. Gynecol Oncol. 2014;133(3):439–45.

    Article  PubMed  CAS  Google Scholar 

  22. Lee CY, Park SY, Shin TR, Park YB, Kim CH, Jang SH, et al. Early-onset neutropenia during perioperative chemotherapy is predictive of increased survival in patients with completely resected non-small cell lung cancer: a retrospective analysis. Anticancer Res. 2013;33(6):2755–61.

    PubMed  CAS  Google Scholar 

  23. Jang SH, Kim SY, Kim JH, Park S, Hwang YI, Kim DG, et al. Timing of chemotherapy-induced neutropenia is a prognostic factor in patients with metastatic non-small-cell lung cancer: a retrospective analysis in gemcitabine-plus-platinum-treated patients. J Cancer Res Clin Oncol. 2013;139(3):409–17.

    Article  PubMed  CAS  Google Scholar 

  24. Iranzo V, Sirera R, Bremnes RM, Blasco A, Jantus-Lewintre E, Taron M, et al. Chemotherapy-induced neutropenia does not correlate with DNA repair gene polymorphisms and treatment efficacy in advanced non-small-cell lung cancer patients. Clin Lung Cancer. 2011;12(4):224–30.

    Article  PubMed  CAS  Google Scholar 

  25. Di Maio M, Gridelli C, Gallo C, Shepherd F, Piantedosi FV, Cigolari S, et al. Chemotherapy-induced neutropenia and treatment efficacy in advanced non-small-cell lung cancer: a pooled analysis of three randomised trials. Lancet Oncol. 2005;6(9):669–77.

    Article  PubMed  CAS  Google Scholar 

  26. Pond GR, Berry WR, Galsky MD, Wood BA, Leopold LH, Sonpavde G. Neutropenia as a potential pharmacodynamic marker for docetaxel-based chemotherapy in men with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2012;30(5_suppl):51.

    Article  Google Scholar 

  27. Pond GR, Berry WR, Galsky MD, Wood BA, Leopold L, Sonpavde G. Neutropenia as a potential pharmacodynamic marker for docetaxel-based chemotherapy in men with metastatic castration-resistant prostate cancer. Clin Genitourin Cancer. 2012;10(4):239–45.

    Article  PubMed  Google Scholar 

  28. Meisel A, von Felten S, Vogt DR, Liewen H, de Wit R, de Bono J, et al. Severe neutropenia during cabazitaxel treatment is associated with survival benefit in men with metastatic castration-resistant prostate cancer (mCRPC): a post-hoc analysis of the TROPIC phase III trial. Eur J Cancer. 2016;56:93–100.

    Article  PubMed  CAS  Google Scholar 

  29. Donskov F, Michaelson MD, Puzanov I, Davis MP, Bjarnason GA, Motzer RJ, et al. Sunitinib-associated hypertension and neutropenia as efficacy biomarkers in metastatic renal cell carcinoma patients. Br J Cancer. 2015;113(11):1571–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hashiguchi Y, Kasai M, Fukuda T, Ichimura T, Yasui T, Sumi T. Chemotherapy-induced neutropenia and febrile neutropenia in patients with gynecologic malignancy. Anticancer Drugs. 2015;26(10):1054–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kuboki Y, Mizunuma N, Ozaka M, Ogura M, Suenaga M, Shinozaki E, et al. Grade 3/4 neutropenia is a limiting factor in second-line FOLFIRI following FOLFOX4 failure in elderly patients with metastatic colorectal cancer. Oncol Lett. 2011;2(3):493–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lee YM, Lang D, Lockwood C. Prognostic factors for risk stratification of adult cancer patients with chemotherapy-induced febrile neutropenia: a systematic review and meta-analysis. JBI Libr Syst Rev. 2012;10(40):2593–657.

    PubMed  Google Scholar 

  33. Weycker D, Li X, Edelsberg J, Barron R, Kartashov A, Xu H, et al. Risk and consequences of chemotherapy-induced febrile neutropenia in patients with metastatic solid tumors. J Oncol Pract. 2015;11(1):47–54.

    Article  PubMed  Google Scholar 

  34. Kalinka-Warzocha E, Plazas JG, Mineur L, Salek T, Hendlisz A, DeCosta L, et al. Chemotherapy treatment patterns and neutropenia management in gastric cancer. Gastric Cancer. 2015;18(2):360–7.

    Article  PubMed  CAS  Google Scholar 

  35. Watanabe H, Ikesue H, Oshiro M, Nagata K, Mishima K, Takada A, et al. Risk factors for predicting severe neutropenia induced by amrubicin in patients with advanced lung cancer. Chemotherapy. 2012;58(6):419–25.

    Article  PubMed  CAS  Google Scholar 

  36. Cortejoso L, Garcia-Gonzalez X, Garcia MI, Garcia-Alfonso P, Sanjurjo M, Lopez-Fernandez LA. Cost-effectiveness of screening for DPYD polymorphisms to prevent neutropenia in cancer patients treated with fluoropyrimidines. Pharmacogenomics. 2016;17(9):979–84.

    Article  PubMed  CAS  Google Scholar 

  37. Patel SM, Chan J, Hui RL, Spence MM. Evaluation of the role of UGT1A1 genotype testing in colorectal cancer patients administered irinotecan and the occurence of grade 3 and 4 neutropenia. J Clin Oncol. 2012;30(4_suppl):412.

    Article  Google Scholar 

  38. Hazama S, Okuyama Y, Kato T, Okayama N, Hinoda Y, Sakamoto J, et al. Use of genotype subset selections of multi-UGT1As polymorphisms to predict severe neutropenia and tumor responses of metastatic CRC patients received FOLFIRI regimen. J Clin Oncol. 2009;27(15_suppl):e15038.

    Google Scholar 

  39. Atasilp C, Chansriwong P, Sirachainan E, Reungwetwattana T, Chamnanphon M, Puangpetch A, et al. Correlation of UGT1A1(*)28 and (*)6 polymorphisms with irinotecan-induced neutropenia in Thai colorectal cancer patients. Drug Metab Pharmacokinet. 2016;31(1):90–4.

    Article  PubMed  CAS  Google Scholar 

  40. Li M, Seiser EL, Baldwin RM, Ramirez J, Ratain MJ, Innocenti F, et al. ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. Pharmacogenomics J. 2018;18(1):35–42. https://doi.org/10.1038/tpj.2016.75.

    Article  PubMed  CAS  Google Scholar 

  41. Uchiyama T, Kanno H, Ishitani K, Fujii H, Ohta H, Matsui H, et al. An SNP in CYP39A1 is associated with severe neutropenia induced by docetaxel. Cancer Chemother Pharmacol. 2012;69(6):1617–24.

    Article  PubMed  CAS  Google Scholar 

  42. Nieuweboer AJ, Smid M, de Graan AJ, Elbouazzaoui S, de Bruijn P, Martens JW, et al. Predicting paclitaxel-induced neutropenia using the DMET platform. Pharmacogenomics. 2015;16(11):1231–41.

    Article  PubMed  CAS  Google Scholar 

  43. Ichikawa W, Uehara K, Minamimura K, Tanaka C, Takii Y, Miyauchi H, et al. An internally and externally validated nomogram for predicting the risk of irinotecan-induced severe neutropenia in advanced colorectal cancer patients. Br J Cancer. 2015;112(10):1709–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lewis LD, Miller AA, Owzar K, Bies RR, Markova S, Jiang C, et al. The relationship of polymorphisms in ABCC2 and SLCO1B3 with docetaxel pharmacokinetics and neutropenia: CALGB 60805 (Alliance). Pharmacogenet Genom. 2013;23(1):29–33.

    Article  CAS  Google Scholar 

  45. Tang NL, Liao CD, Wang X, Mo FK, Chan VT, Ng R, et al. Role of pharmacogenetics on adjuvant chemotherapy-induced neutropenia in Chinese breast cancer patients. J Cancer Res Clin Oncol. 2013;139(3):419–27.

    Article  PubMed  CAS  Google Scholar 

  46. Tsuji D, Ikeda M, Yamamoto K, Nakamori H, Kim YI, Kawasaki Y, et al. Drug-related genetic polymorphisms affecting severe chemotherapy-induced neutropenia in breast cancer patients: a hospital-based observational study. Medicine (Baltim). 2016;95(44):e5151.

    Article  CAS  Google Scholar 

  47. Laskey RA, Poniewierski MS, Lopez MA, Hanna RK, Secord AA, Gehrig PA, et al. Predictors of severe and febrile neutropenia during primary chemotherapy for ovarian cancer. Gynecol Oncol. 2012;125(3):625–30.

    Article  PubMed  Google Scholar 

  48. Alenzi EO, Kelley GA. The association of hyperglycemia and diabetes mellitus and the risk of chemotherapy-induced neutropenia among cancer patients: a systematic review with meta-analysis. J Diabetes Complicat. 2017;31(1):267–72. https://doi.org/10.1016/j.jdiacomp.2016.09.006.

    Article  PubMed  Google Scholar 

  49. Ikesue H, Watanabe H, Hirano M, Chikamori A, Suetsugu K, Ryokai Y, et al. Risk factors for predicting severe neutropenia induced by pemetrexed plus carboplatin therapy in patients with advanced non-small cell lung cancer. Biol Pharm Bull. 2015;38(8):1192–8.

    Article  PubMed  CAS  Google Scholar 

  50. Yano R, Konno A, Watanabe K, Tsukamoto H, Kayano Y, Ohnaka H, et al. Pharmacoethnicity of docetaxel-induced severe neutropenia: integrated analysis of published phase II and III trials. Int J Clin Oncol. 2013;18(1):96–104.

    Article  PubMed  CAS  Google Scholar 

  51. Shigeta K, Kosaka T, Yazawa S, Yasumizu Y, Mizuno R, Nagata H, et al. Predictive factors for severe and febrile neutropenia during docetaxel chemotherapy for castration-resistant prostate cancer. Int J Clin Oncol. 2015;20(3):605–12.

    Article  PubMed  CAS  Google Scholar 

  52. Gupta V, Kumar V, Singh SK. Low vitamin D levels are associated with an adverse clinical outcome in febrile neutropenia. J Pediatr Hematol Oncol. 2016;38(3):202–4.

    Article  PubMed  CAS  Google Scholar 

  53. O’Malley M, Healy P, Daignault S, Ramnath N. Cigarette smoking and gemcitabine-induced neutropenia in advanced solid tumors. Oncology. 2013;85(4):216–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sato I, Nakaya N, Shimasaki T, Nakajima H, Motoo Y. Prediction of docetaxel monotherapy-induced neutropenia based on the monocyte percentage. Oncol Lett. 2012;3(4):860–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Lyman GH, Abella E, Pettengell R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: a systematic review. Crit Rev Oncol Hematol. 2014;90(3):190–9.

    Article  PubMed  Google Scholar 

  56. Dinan MA, Hirsch BR, Lyman GH. Management of chemotherapy-induced neutropenia: measuring quality, cost, and value. J Natl Compr Canc Netw. 2015;13(1):e1–7.

    Article  PubMed  Google Scholar 

  57. Yoshida Y, Hoshino S, Aisu N, Mogi A, Yamada T, Kojima D, et al. Can grade 2 neutropenia predict the risk of grade 3 neutropenia in metastatic colorectal cancer patients treated with chemotherapy? Support Care Cancer. 2015;23(6):1623–7.

    Article  PubMed  Google Scholar 

  58. Chiarotto JA, Dranitsaris G. Full-dose chemotherapy in early stage breast cancer regardless of absolute neutrophil count and without G-CSF does not increase chemotherapy-induced febrile neutropenia. Support Care Cancer. 2013;21(10):2727–31.

    Article  PubMed  Google Scholar 

  59. Pinter T, Klippel Z, Cesas A, Croitoru A, Decaestecker J, Gibbs P, et al. A phase III, randomized, double-blind, placebo-controlled trial of pegfilgrastim in patients receiving first-line FOLFOX/bevacizumab or FOLFIRI/bevacizumab for locally advanced or metastatic colorectal cancer: final results of the pegfilgrastim and anti-VEGF evaluation study (PAVES). Clin Colorectal Cancer. 2017;16(2):103–114.e3. https://doi.org/10.1016/j.clcc.2016.08.008.

    Article  PubMed  Google Scholar 

  60. Barron R, Michels SL, Reynolds MW, Tomic K, Yu J, Lyman G. Risk of mortality in patients with cancer experiencing febrile neutropenia. J Clin Oncol. 2009;27(15_suppl):9561.

    Google Scholar 

  61. Lal A, Kumar P, Bhurgri Y, Rizvi N, Shaikh AJ, Adil S, et al. Factors influencing in-hospital length of stay and mortality in cancer patients suffering from febrile neutropenia. J Clin Oncol. 2009;27(15_suppl):e20716.

    Google Scholar 

  62. Bouteloup M, Perinel S, Bourmaud A, Azoulay E, Mokart D, Darmon M. Outcomes in adult critically Ill cancer patients with and without neutropenia: a systematic review and meta-analysis of the Groupe de Recherche en Reanimation Respiratoire du patient d’Onco-Hematologie (GRRR-OH). Oncotarget. 2017;8(1):1860–70. https://doi.org/10.18632/oncotarget.12165.

    Article  PubMed  Google Scholar 

  63. Aapro M, Bokemeyer C, Ludwig H, Gascon P, Boccadoro M, Denhaerynck K, et al. Chemotherapy-induced (febrile) neutropenia prophylaxis with biosimilar filgrastim in elderly versus non-elderly cancer patients: patterns, outcomes, and determinants (MONITOR-GCSF study). J Geriatr Oncol. 2017;8(2):86–95. https://doi.org/10.1016/j.jgo.2016.09.006.

    Article  PubMed  Google Scholar 

  64. Chohan K, Lai D, McNamara M, Grogan L, Breathnach OS. The frequency of febrile neutropenia in oncology patients receiving chemotherapy. J Clin Oncol. 2009;27(15_suppl):e20691.

    Google Scholar 

  65. Chia VM, Page JH, Rodriguez R, Yang SJ, Huynh J, Chao C. Chronic comorbid conditions associated with risk of febrile neutropenia in breast cancer patients treated with chemotherapy. Breast Cancer Res Treat. 2013;138(2):621–31.

    Article  PubMed  CAS  Google Scholar 

  66. Chan A, Lee CP, Chiang J, Ng R. Breakthrough febrile neutropenia and associated complications among elderly cancer patients receiving myelosuppressive chemotherapy for solid tumors and lymphomas. Support Care Cancer. 2013;21(8):2137–43.

    Article  PubMed  Google Scholar 

  67. Li X, Luthra R, Morrow PK, Fisher MD, Reiner M, Barron RL, et al. Comorbidities among patients with cancer who do and do not develop febrile neutropenia during the first chemotherapy cycle. J Oncol Pharm Pract. 2016;22(5):679–89.

    Article  PubMed  CAS  Google Scholar 

  68. Ozguroglu M, Oudard S, Sartor AO, Hansen S, Machiels JH, Shen L, et al. Effect of G-CSF prophylaxis on the occurrence of neutropenia in men receiving cabazitaxel plus prednisone for the treatment of metastatic castration-resistant prostate cancer (mCRPC) in the TROPIC study. J Clin Oncol. 2011;29(7):144.

    Article  Google Scholar 

  69. Dienstmann R, Brana I, Rodon J, Tabernero J. Toxicity as a biomarker of efficacy of molecular targeted therapies: focus on EGFR and VEGF inhibiting anticancer drugs. Oncologist. 2011;16(12):1729–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Fukae M, Shiraishi Y, Hirota T, Sasaki Y, Yamahashi M, Takayama K, et al. Population pharmacokinetic-pharmacodynamic modeling and model-based prediction of docetaxel-induced neutropenia in Japanese patients with non-small cell lung cancer. Cancer Chemother Pharmacol. 2016;78(5):1013–23.

    Article  PubMed  CAS  Google Scholar 

  71. Pawloski PA, Thomas AJ, Kane S, Vazquez-Benitez G, Shapiro GR, Lyman GH. Predicting neutropenia risk in patients with cancer using electronic data. J Am Med Inform Assoc. 2017;24(e1):e129–35. https://doi.org/10.1093/jamia/ocw131.

    Article  PubMed  Google Scholar 

  72. Huang K, Luo A, Li X, Li S, Wang S. Chemotherapy-induced neutropenia during adjuvant treatment for cervical cancer patients: development and validation of a prediction model. Int J Clin Exp Med. 2015;8(7):10835–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Lyman GH, Lyman CH, Agboola O. Risk models for predicting chemotherapy-induced neutropenia. Oncologist. 2005;10(6):427–37.

    Article  PubMed  Google Scholar 

  74. Nieuweboer AJ, Smid M, de Graan AM, Elbouazzaoui S, de Bruijn P, Eskens FA, et al. Role of genetic variation in docetaxel-induced neutropenia and pharmacokinetics. Pharmacogenom J. 2016;16(6):519–24.

    Article  CAS  Google Scholar 

  75. Charehbili A, de Groot S, van der Straaten T, Swen JJ, Pijl H, Gelderblom H, et al. Exploratory analysis of candidate germline gene polymorphisms in breast cancer patients treated with neoadjuvant anthracycline-containing chemotherapy and associations with febrile neutropenia. Pharmacogenomics. 2015;16(11):1267–76.

    Article  PubMed  CAS  Google Scholar 

  76. Wang L, Chen YZ, Shi D, Shi XY, Zou Z, Zhao JH. Incidence and risk of severe neutropenia in advanced cancer patients treated with cetuximab: a meta-analysis. Drugs R D. 2011;11(4):317–26.

    Article  PubMed  Google Scholar 

  77. Patel M, Palani S, Chakravarty A, Yang J, Shyu WC, Mettetal JT. Dose schedule optimization and the pharmacokinetic driver of neutropenia. PLoS One. 2014;9(10):e109892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kouranos V, Dimopoulos G, Vassias A, Syrigos KN. Chemotherapy-induced neutropenia in lung cancer patients: the role of antibiotic prophylaxis. Cancer Lett. 2011;313(1):9–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Grothey.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript. The authors worked on their own research and protected time to complete the article.

Conflict of interest

Axel Grothey has no conflicts of interest to disclose. Author Pashtoon Murtaza Kasi institution received consulting fees for Pashtoon Murtaza Kasi to participate in an advisory board meeting in 2016 by Taiho Oncology. The authors have no other conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasi, P.M., Grothey, A. Chemotherapy-Induced Neutropenia as a Prognostic and Predictive Marker of Outcomes in Solid-Tumor Patients. Drugs 78, 737–745 (2018). https://doi.org/10.1007/s40265-018-0909-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-0909-3

Navigation