Skip to main content
Log in

Pharmacogenetics of Opioid Use Disorder Treatment

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Opioid use disorder (OUD) is a significant health problem in the United States and many other countries. A combination of issues, most notably increased prescription of opioid analgesics, has resulted in climbing rates of opioid abuse and overdose over the last decade. This ongoing epidemic has produced a growing population of patients requiring treatment for OUD. Medications such as methadone and buprenorphine have well documented success rates in treating the disorder compared with placebo. However, significant percentages of the population still fail to maintain abstinence or reduce illicit opioid use while using such medications. Genetic variation may play a role in this variability in outcome through pharmacokinetic or pharmacodynamic effects on OUD medications, or by affecting the rate of negative side effects and adverse events. This review focuses on the existing literature on the pharmacogenetics of OUD treatment, with specific focus on medication metabolism, treatment outcomes, and adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brady KT, McCauley JL, Back SE. Prescription opioid misuse, abuse, and treatment in the united states: an update. Am J Psychiatry. 2016;173(1):18–26.

    PubMed  Google Scholar 

  2. Han B, et al. Prescription opioid use, misuse, and use disorders in US adults: 2015 National survey on drug use and health. Ann Intern Med. 2017;167(5):293–301.

    PubMed  Google Scholar 

  3. Martell BA, et al. Systematic review: opioid treatment for chronic back pain: prevalence, efficacy, and association with addiction. Ann Intern Med. 2007;146(2):116–27.

    PubMed  Google Scholar 

  4. Jones CM. Heroin use and heroin use risk behaviors among nonmedical users of prescription opioid pain relievers—United States, 2002–2004 and 2008–2010. Drug Alcohol Depend. 2013;132(1–2):95–100.

    PubMed  Google Scholar 

  5. Birnbaum HG, et al. Societal costs of prescription opioid abuse, dependence, and misuse in the United States. Pain Med. 2011;12(4):657–67.

    PubMed  Google Scholar 

  6. Florence CS, et al. The economic burden of prescription opioid overdose, abuse, and dependence in the United States, 2013. Med Care. 2016;54(10):901–6.

    PubMed  PubMed Central  Google Scholar 

  7. Jiang R, et al. The societal cost of heroin use disorder in the United States. PLoS One. 2017;12(5):e0177323.

    PubMed  PubMed Central  Google Scholar 

  8. Novak SP, et al. Nonmedical use of prescription drugs in the European Union. BMC Psychiatry. 2016;16:274.

    PubMed  PubMed Central  Google Scholar 

  9. United Nations Office on Drugs and Crime. World Drug Report 2017, United Nations publication. ISBN: 978-92-1-148291-1

  10. Mattick RP, et al. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst Rev. 2014;(2):CD002207. https://doi.org/10.1002/14651858.CD002207.pub2.

  11. Degenhardt L, et al. The impact of opioid substitution therapy on mortality post-release from prison: retrospective data linkage study. Addiction. 2014;109(8):1306–17.

    PubMed  Google Scholar 

  12. Gowing L, et al. Oral substitution treatment of injecting opioid users for prevention of HIV infection. Cochrane Database Syst Rev. 2011;(8):CD004145. https://doi.org/10.1002/14651858.CD004145.pub4.

  13. Lutfy K, Cowan A. Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol. 2004;2(4):395–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Soyka M. New developments in the management of opioid dependence: focus on sublingual buprenorphine-naloxone. Subst Abuse Rehabil. 2015;6:1–14.

    PubMed  PubMed Central  Google Scholar 

  15. Minozzi S, et al. Oral naltrexone maintenance treatment for opioid dependence. Cochrane Database Syst Rev. 2011;(4):CD001333. https://doi.org/10.1002/14651858.CD001333.pub4.

  16. Kirchmayer U, et al. A systematic review on the efficacy of naltrexone maintenance treatment in opioid dependence. Addiction. 2002;97(10):1241–9.

    PubMed  Google Scholar 

  17. Johansson BA, Berglund M, Lindgren A. Efficacy of maintenance treatment with naltrexone for opioid dependence: a meta-analytical review. Addiction. 2006;101(4):491–503.

    PubMed  Google Scholar 

  18. Krupitsky E, et al. Injectable extended-release naltrexone (XR-NTX) for opioid dependence: long-term safety and effectiveness. Addiction. 2013;108(9):1628–37.

    PubMed  Google Scholar 

  19. Krupitsky E, et al. Injectable extended-release naltrexone for opioid dependence: a double-blind, placebo-controlled, multicentre randomised trial. Lancet. 2011;377(9776):1506–13.

    CAS  PubMed  Google Scholar 

  20. Eap CB, Buclin T, Baumann P. Interindividual variability of the clinical pharmacokinetics of methadone: implications for the treatment of opioid dependence. Clin Pharmacokinet. 2002;41(14):1153–93.

    CAS  PubMed  Google Scholar 

  21. Chiang CN, Hawks RL. Pharmacokinetics of the combination tablet of buprenorphine and naloxone. Drug Alcohol Depend. 2003;70(2 Suppl):S39–47.

    CAS  PubMed  Google Scholar 

  22. McCance-Katz EF, et al. Interaction between buprenorphine and atazanavir or atazanavir/ritonavir. Drug Alcohol Depend. 2007;91(2–3):269–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hser YI, et al. Treatment retention among patients randomized to buprenorphine/naloxone compared to methadone in a multi-site trial. Addiction. 2014;109(1):79–87.

    PubMed  Google Scholar 

  24. Brewer DD, et al. A meta-analysis of predictors of continued drug use during and after treatment for opiate addiction. Addiction. 1998;93(1):73–92.

    CAS  PubMed  Google Scholar 

  25. Clark RE, et al. Risk factors for relapse and higher costs among medicaid members with opioid dependence or abuse: opioid agonists, comorbidities, and treatment history. J Subst Abuse Treat. 2015;57:75–80.

    PubMed  PubMed Central  Google Scholar 

  26. Yin W, et al. Factors associated with depression and anxiety among patients attending community-based methadone maintenance treatment in China. Addiction. 2015;110(Suppl 1):51–60.

    PubMed  Google Scholar 

  27. Ferri M, et al. Predictive factors for relapse in patients on buprenorphine maintenance. Am J Addict. 2014;23(1):62–7.

    PubMed  Google Scholar 

  28. Weinstein ZM, et al. Long-term retention in Office Based Opioid Treatment with buprenorphine. J Subst Abuse Treat. 2017;74:65–70.

    PubMed  Google Scholar 

  29. Bouer R, et al. The roles of P-glycoprotein and intracellular metabolism in the intestinal absorption of methadone: in vitro studies using the rat everted intestinal sac. Fundam Clin Pharmacol. 1999;13(4):494–500.

    CAS  PubMed  Google Scholar 

  30. Rodriguez M, et al. Effect of P-glycoprotein inhibition on methadone analgesia and brain distribution in the rat. J Pharm Pharmacol. 2004;56(3):367–74.

    CAS  PubMed  Google Scholar 

  31. Coller JK, et al. ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin Pharmacol Ther. 2006;80(6):682–90.

    CAS  PubMed  Google Scholar 

  32. Levran O, et al. ABCB1 (MDR1) genetic variants are associated with methadone doses required for effective treatment of heroin dependence. Hum Mol Genet. 2008;17(14):2219–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim RB, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 2001;70(2):189–99.

    CAS  PubMed  Google Scholar 

  34. Hung CC, et al. Impact of genetic polymorphisms in ABCB1, CYP2B6, OPRM1, ANKK1 and DRD2 genes on methadone therapy in Han Chinese patients. Pharmacogenomics. 2011;12(11):1525–33.

    CAS  PubMed  Google Scholar 

  35. Crettol S, et al. ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther. 2006;80(6):668–81.

    CAS  PubMed  Google Scholar 

  36. Csajka C, et al. Population genetic-based pharmacokinetic modeling of methadone and its relationship with the QTc interval in OPIOID-DEPENDENT PATIENTS. Clin Pharmacokinet. 2016;55(12):1521–33.

    CAS  PubMed  Google Scholar 

  37. Crettol S, et al. No influence of ABCB1 haplotypes on methadone dosage requirement. Clin Pharmacol Ther. 2008;83(5):668–9 (author reply 669–70).

    CAS  PubMed  Google Scholar 

  38. Fonseca F, et al. Contribution of cytochrome P450 and ABCB1 genetic variability on methadone pharmacokinetics, dose requirements, and response. PLoS One. 2011;6(5):e19527.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mouly S, et al. Methadone dose in heroin-dependent patients: role of clinical factors, comedications, genetic polymorphisms and enzyme activity. Br J Clin Pharmacol. 2015;79(6):967–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Buchard A, et al. Postmortem blood concentrations of R- and S-enantiomers of methadone and EDDP in drug users: influence of co-medication and p-glycoprotein genotype. J Forensic Sci. 2010;55(2):457–63.

    CAS  PubMed  Google Scholar 

  41. Lee HY, et al. Moving toward personalized medicine in the methadone maintenance treatment program: a pilot study on the evaluation of treatment responses in Taiwan. Biomed Res Int. 2013;2013:741403.

    PubMed  PubMed Central  Google Scholar 

  42. Luo R, et al. Impact of SNP-SNP interaction among ABCB1, ARRB2, DRD1 and OPRD1 on methadone dosage requirement in Han Chinese patients. Pharmacogenomics. 2017;18(18):1659–70.

    CAS  PubMed  Google Scholar 

  43. Dennis BB, et al. Impact of ABCB1 and CYP2B6 genetic polymorphisms on methadone metabolism, dose and treatment response in patients with opioid addiction: a systematic review and meta-analysis. PLoS One. 2014;9(1):e86114.

    PubMed  PubMed Central  Google Scholar 

  44. Bart G, et al. Ethnic and genetic factors in methadone pharmacokinetics: a population pharmacokinetic study. Drug Alcohol Depend. 2014;145:185–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zahari Z, et al. Relationship between ABCB1 polymorphisms and serum methadone concentration in patients undergoing methadone maintenance therapy (MMT). Am J Drug Alcohol Abuse. 2016;42(5):587–96.

    PubMed  Google Scholar 

  46. van der Weide J, Steijns LS. Cytochrome P450 enzyme system: genetic polymorphisms and impact on clinical pharmacology. Ann Clin Biochem. 1999;36(Pt 6):722–9.

    PubMed  Google Scholar 

  47. Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther. 2017;102(4):688–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gaedigk A, et al. The pharmacogene variation (pharmvar) consortium: incorporation of the human cytochrome P450 (CYP) allele nomenclature database. Clin Pharmacol Ther. 2017;103(3):399–401.

    PubMed  PubMed Central  Google Scholar 

  49. Kharasch ED, Stubbert K. Role of cytochrome P4502B6 in methadone metabolism and clearance. J Clin Pharmacol. 2013;53(3):305–13.

    PubMed  PubMed Central  Google Scholar 

  50. Kharasch ED, et al. Methadone pharmacogenetics: CYP2B6 polymorphisms determine plasma concentrations, clearance, and metabolism. Anesthesiology. 2015;123(5):1142–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Levran O, et al. CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction. Addict Biol. 2013;18(4):709–16.

    CAS  PubMed  Google Scholar 

  52. Tsai HJ, et al. Assessment of CYP450 genetic variability effect on methadone dose and tolerance. Pharmacogenomics. 2014;15(7):977–86.

    CAS  PubMed  Google Scholar 

  53. Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Crettol S, et al. Methadone enantiomer plasma levels, CYP2B6, CYP2C19, and CYP2C9 genotypes, and response to treatment. Clin Pharmacol Ther. 2005;78(6):593–604.

    CAS  PubMed  Google Scholar 

  55. Wang SC, et al. CYP2B6 polymorphisms influence the plasma concentration and clearance of the methadone S-enantiomer. J Clin Psychopharmacol. 2011;31(4):463–9.

    CAS  PubMed  Google Scholar 

  56. Dobrinas M, et al. Contribution of CYP2B6 alleles in explaining extreme (S)-methadone plasma levels: a CYP2B6 gene resequencing study. Pharmacogenet Genomics. 2013;23(2):84–93.

    CAS  PubMed  Google Scholar 

  57. Bunten H, et al. OPRM1 and CYP2B6 gene variants as risk factors in methadone-related deaths. Clin Pharmacol Ther. 2010;88(3):383–9.

    CAS  PubMed  Google Scholar 

  58. Totah RA, et al. Role of CYP2B6 in stereoselective human methadone metabolism. Anesthesiology. 2008;108(3):363–74.

    CAS  PubMed  Google Scholar 

  59. Gerber JG, Rhodes RJ, Gal J. Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality. 2004;16(1):36–44.

    CAS  PubMed  Google Scholar 

  60. Shinderman M, et al. Cytochrome P4503A4 metabolic activity, methadone blood concentrations, and methadone doses. Drug Alcohol Depend. 2003;69(2):205–11.

    CAS  PubMed  Google Scholar 

  61. Shiran MR, et al. Contribution of the activities of CYP3A, CYP2D6, CYP1A2 and other potential covariates to the disposition of methadone in patients undergoing methadone maintenance treatment. Br J Clin Pharmacol. 2009;67(1):29–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shiran MR, et al. Pharmacokinetic-pharmacodynamic modeling of mood and withdrawal symptoms in relation to plasma concentrations of methadone in patients undergoing methadone maintenance treatment. J Clin Psychopharmacol. 2012;32(5):666–71.

    CAS  PubMed  Google Scholar 

  63. Eap CB, et al. Cytochrome P450 2D6 genotype and methadone steady-state concentrations. J Clin Psychopharmacol. 2001;21(2):229–34.

    CAS  PubMed  Google Scholar 

  64. Kringen MK, et al. Combined effect of CYP2B6 genotype and other candidate genes on a steady-state serum concentration of methadone in opioid maintenance treatment. Ther Drug Monit. 2017;39(5):550–5.

    CAS  PubMed  Google Scholar 

  65. Coller JK, et al. Lack of influence of CYP2D6 genotype on the clearance of (R)-, (S)- and racemic-methadone. Int J Clin Pharmacol Ther. 2007;45(7):410–7.

    CAS  PubMed  Google Scholar 

  66. Lotsch J, et al. A KCNJ6 (Kir3.2, GIRK2) gene polymorphism modulates opioid effects on analgesia and addiction but not on pupil size. Pharmacogenet Genomics. 2010;20(5):291–7.

    PubMed  Google Scholar 

  67. Levran O, et al. Association of genetic variation in pharmacodynamic factors with methadone dose required for effective treatment of opioid addiction. Pharmacogenomics. 2013;14(7):755–68.

    CAS  PubMed  Google Scholar 

  68. Barratt DT, et al. ABCB1 haplotype and OPRM1 118A > G genotype interaction in methadone maintenance treatment pharmacogenetics. Pharmgenomics Pers Med. 2012;5:53–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith AH, et al. Genome-wide association study of therapeutic opioid dosing identifies a novel locus upstream of OPRM1. Mol Psychiatry. 2017;22(3):346–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang HC, et al. Genome-wide pharmacogenomic study on methadone maintenance treatment identifies SNP rs17180299 and multiple haplotypes on CYP2B6, SPON1, and GSG1L associated with plasma concentrations of methadone R- and S-enantiomers in heroin-dependent patients. PLoS Genet. 2016;12(3):e1005910.

    PubMed  PubMed Central  Google Scholar 

  71. Burstyn-Cohen T, et al. F-Spondin is required for accurate pathfinding of commissural axons at the floor plate. Neuron. 1999;23(2):233–46.

    CAS  PubMed  Google Scholar 

  72. Gu X, et al. GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons. Nat Commun. 2016;7:10873.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Iribarne C, et al. Involvement of cytochrome P450 3A4 in N-dealkylation of buprenorphine in human liver microsomes. Life Sci. 1997;60(22):1953–64.

    CAS  PubMed  Google Scholar 

  74. Moody DE, et al. A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for determination of buprenorphine, its metabolite, norbuprenorphine, and a coformulant, naloxone, that is suitable for in vivo and in vitro metabolism studies. Anal Biochem. 2002;306(1):31–9.

    CAS  PubMed  Google Scholar 

  75. Picard N, et al. In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005;33(5):689–95.

    CAS  PubMed  Google Scholar 

  76. Crist RC, et al. An intronic variant in OPRD1 predicts treatment outcome for opioid dependence in African-Americans. Neuropsychopharmacology. 2013;38(10):2003–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Crist RC, et al. A polymorphism in the OPRM1 3’-untranslated region is associated with methadone efficacy in treating opioid dependence. Pharmacogenomics J. 2018;18(1):173–9.

    CAS  PubMed  Google Scholar 

  78. Kuo HW, et al. Pharmacogenomics study on cadherin 2 network with regard to HIV infection and methadone treatment outcome. PLoS One. 2017;12(3):e0174647.

    PubMed  PubMed Central  Google Scholar 

  79. Arikkath J, Reichardt LF. Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci. 2008;31(9):487–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nelson EC, et al. Evidence of CNIH3 involvement in opioid dependence. Mol Psychiatry. 2016;21(5):608–14.

    CAS  PubMed  Google Scholar 

  81. Fonseca F, et al. Response to methadone maintenance treatment is associated with the MYOCD and GRM6 genes. Mol Diagn Ther. 2010;14(3):171–8.

    CAS  PubMed  Google Scholar 

  82. Fonseca F, et al. ALDH5A1 variability in opioid dependent patients could influence response to methadone treatment. Eur Neuropsychopharmacol. 2014;24(3):420–4.

    CAS  PubMed  Google Scholar 

  83. Oneda B, et al. beta-Arrestin2 influences the response to methadone in opioid-dependent patients. Pharmacogenomics J. 2011;11(4):258–66.

    CAS  PubMed  Google Scholar 

  84. Crettol S, et al. Association of dopamine and opioid receptor genetic polymorphisms with response to methadone maintenance treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(7):1722–7.

    CAS  PubMed  Google Scholar 

  85. Barratt DT, Coller JK, Somogyi AA. Association between the DRD2 A1 allele and response to methadone and buprenorphine maintenance treatments. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(4):323–31.

    CAS  PubMed  Google Scholar 

  86. Bawor M, et al. Contribution of BDNF and DRD2 genetic polymorphisms to continued opioid use in patients receiving methadone treatment for opioid use disorder: an observational study. Addict Sci Clin Pract. 2015;10:19.

    PubMed  PubMed Central  Google Scholar 

  87. Lawford BR, et al. The D(2) dopamine receptor A(1) allele and opioid dependence: association with heroin use and response to methadone treatment. Am J Med Genet. 2000;96(5):592–8.

    CAS  PubMed  Google Scholar 

  88. de Cid R, et al. BDNF variability in opioid addicts and response to methadone treatment: preliminary findings. Genes Brain Behav. 2008;7(5):515–22.

    PubMed  Google Scholar 

  89. Wang SC, et al. The association of genetic polymorphisms in the kappa-opioid receptor 1 gene with body weight, alcohol use, and withdrawal symptoms in patients with methadone maintenance. J Clin Psychopharmacol. 2014;34(2):205–11.

    CAS  PubMed  Google Scholar 

  90. Tian JN, et al. UGT2B7 genetic polymorphisms are associated with the withdrawal symptoms in methadone maintenance patients. Pharmacogenomics. 2012;13(8):879–88.

    CAS  PubMed  Google Scholar 

  91. de los Cobos JP, et al. Association of CYP2D6 ultrarapid metabolizer genotype with deficient patient satisfaction regarding methadone maintenance treatment. Drug Alcohol Depend. 2007;89(2–3):190–4.

    Google Scholar 

  92. de los Cobos JP, et al. Satisfaction With methadone and opioid receptor genes polymorphisms in treatment-refractory heroin-dependent patients. J Clin Psychopharmacol. 2017;37(3):378–80.

    Google Scholar 

  93. Clarke TK, et al. Genetic variation in OPRD1 and the response to treatment for opioid dependence with buprenorphine in European-American females. Pharmacogenomics J. 2014;14(3):303–8.

    CAS  PubMed  Google Scholar 

  94. Zhu Y, et al. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron. 1999;24(1):243–52.

    CAS  PubMed  Google Scholar 

  95. Nelson EC, et al. Association of OPRD1 polymorphisms with heroin dependence in a large case-control series. Addict Biol. 2014;19(1):111–21.

    CAS  PubMed  Google Scholar 

  96. Gerra G, et al. Association between gene variants and response to buprenorphine maintenance treatment. Psychiatry Res. 2014;215(1):202–7.

    CAS  PubMed  Google Scholar 

  97. Evans E, et al. Mortality among individuals accessing pharmacological treatment for opioid dependence in California, 2006–10. Addiction. 2015;110(6):996–1005.

    PubMed  PubMed Central  Google Scholar 

  98. Concool B, Smith H, Stimmel B. Mortality rates of persons entering methadone maintenance: a seven-year study. Am J Drug Alcohol Abuse. 1979;6(3):345–53.

    CAS  PubMed  Google Scholar 

  99. Richards-Waugh LL, et al. Fatal methadone toxicity: potential role of CYP3A4 genetic polymorphism. J Anal Toxicol. 2014;38(8):541–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ahmad T, et al. Tell-Tale SNPs: The Role of CYP2B6 in Methadone Fatalities. J Anal Toxicol. 2017;41(4):325–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bunten H, et al. CYP2B6 and OPRM1 gene variations predict methadone-related deaths. Addict Biol. 2011;16(1):142–4.

    CAS  PubMed  Google Scholar 

  102. Anchersen K, et al. Prevalence and clinical relevance of corrected QT interval prolongation during methadone and buprenorphine treatment: a mortality assessment study. Addiction. 2009;104(6):993–9.

    PubMed  Google Scholar 

  103. Baker JR, et al. Effect of buprenorphine and antiretroviral agents on the QT interval in opioid-dependent patients. Ann Pharmacother. 2006;40(3):392–6.

    CAS  PubMed  Google Scholar 

  104. Harris SC, et al. Effects of buprenorphine on QT intervals in healthy subjects: results of 2 randomized positive- and placebo-controlled trials. Postgrad Med. 2017;129(1):69–80.

    PubMed  Google Scholar 

  105. Krantz MJ. Heterogeneous impact of methadone on the QTc interval: what are the practical implications? J Addict Dis. 2008;27(4):5–9.

    PubMed  Google Scholar 

  106. Eap CB, et al. Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers. Clin Pharmacol Ther. 2007;81(5):719–28.

    CAS  PubMed  Google Scholar 

  107. Carlquist JF, et al. A Possible Mechanistic Link Between the CYP2C19 Genotype, the Methadone Metabolite Ethylidene-1,5-Dimethyl-3,3-Diphenylpyrrolidene (EDDP), and Methadone-Induced Corrected QT Interval Prolongation in a Pilot Study. Mol Diagn Ther. 2015;19(2):131–8.

    CAS  PubMed  Google Scholar 

  108. Wang SC, et al. Functional genetic polymorphisms in CYP2C19 gene in relation to cardiac side effects and treatment dose in a methadone maintenance cohort. OMICS. 2013;17(10):519–26.

    PubMed  PubMed Central  Google Scholar 

  109. Katchman AN, et al. Influence of opioid agonists on cardiac human ether-a-go-go-related gene K(+) currents. J Pharmacol Exp Ther. 2002;303(2):688–94.

    CAS  PubMed  Google Scholar 

  110. Hajj A, et al. KCNH2 polymorphism and methadone dosage interact to enhance QT duration. Drug Alcohol Depend. 2014;141:34–8.

    CAS  PubMed  Google Scholar 

  111. Marjamaa A, et al. High prevalence of four long QT syndrome founder mutations in the Finnish population. Ann Med. 2009;41(3):234–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang SC, et al. Genetic polymorphisms in the opioid receptor mu1 gene are associated with changes in libido and insomnia in methadone maintenance patients. Eur Neuropsychopharmacol. 2012;22(10):695–703.

    PubMed  Google Scholar 

  113. Sharafshah A, et al. Association of OPRD1 gene variants with opioid dependence in addicted male individuals undergoing methadone treatment in the North of Iran. J Psychoactive Drugs. 2017;49(3):242–51.

    PubMed  Google Scholar 

  114. Albonaim A, et al. Association of OPRK1 gene polymorphisms with opioid dependence in addicted men undergoing methadone treatment in an Iranian population. J Addict Dis. 2017;36(4):227–35.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Crist.

Ethics declarations

Funding

Dr Crist was supported by National Institute on Drug Abuse grant K01 DA036751. Dr Clarke is funded by the Wellcome Trust (Wellcome Trust Strategic Award ‘STratifying Resilience and Depression Longitudinally’ [STRADL] Reference 104036/Z/14/Z). Dr Berrettini was supported by National Institute on Drug Abuse grant R01 DA044015. The funding sources had no role in preparation, review, or approval of the manuscript.

Conflicts of interest

Drs Crist, Clarke, and Berrettini declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crist, R.C., Clarke, TK. & Berrettini, W.H. Pharmacogenetics of Opioid Use Disorder Treatment. CNS Drugs 32, 305–320 (2018). https://doi.org/10.1007/s40263-018-0513-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-018-0513-9

Navigation