Skip to main content
Log in

The Molecular Mechanism of Glucagon-Like Peptide-1 Therapy in Alzheimer’s Disease, Based on a Mechanistic Target of Rapamycin Pathway

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The mechanistic target of rapamycin (mTOR) is an important molecule that connects aging, lifespan, energy balance, glucose and lipid metabolism, and neurodegeneration. Rapamycin exerts effects in numerous biological activities via its target protein, playing a key role in energy balance, regulation of autophagy, extension of lifespan, immunosuppression, and protection against neurodegeneration. There are many similar pathophysiological processes and molecular pathways between Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM), and pharmacologic agents used to treat T2DM, including glucagon-like peptide-1 (GLP-1) analogs, seem to be beneficial for AD. mTOR mediates the effects of GLP-1 analogs in the treatment of T2DM; hence, I hypothesize that mTOR is a key molecule for mediating the protective effects of GLP-1 for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Martins IJ, Hone E, Foster JK, Sünram-Lea SI, Gnjec A, Fuller SJ, et al. Apolipoprotein E, cholesterol metabolism, T2DM, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol Psychiatry. 2006;11:721–36.

    Article  CAS  PubMed  Google Scholar 

  2. Wang F, Guo X, Shen X, Kream RM, Mantione KJ, Stefano GB. Vascular dysfunction associated with type 2 T2DM and Alzheimer’s disease: a potential etiological linkage. Med Sci Monit Basic Res. 2014;20:118–29.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsang CK, Qi H, Liu LF, Zheng XF. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today. 2007;12:112–24.

    Article  CAS  PubMed  Google Scholar 

  5. Ha T, Li Y, Gao X, McMullen JR, Shioi T, Izumo S, et al. Attenuation of cardiac hypertrophy by inhibiting both mTOR and NFkappaB activation in vivo. Free Radic Biol Med. 2005;39:1570–80.

    Article  CAS  PubMed  Google Scholar 

  6. Ding Y, Sun X, Redfield M, Kushwaha S, Xu X. Target of rapamcyin (TOR)-based therapeutics for cardiomyopathy: insights from zebrafish genetics. Cell Cycle. 2012;11:428–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garber K. Targeting mTOR: something old, something new. J Natl Cancer Inst. 2009;101:288–90.

    Article  CAS  PubMed  Google Scholar 

  8. Santos RX, Correia SC, Cardoso S, Carvalho C, Santos MS, Moreira PI. Effects of rapamycin and TOR on aging and memory: implications for Alzheimer’s disease. J Neurochem. 2011;117:927–36.

    Article  CAS  PubMed  Google Scholar 

  9. Laokabte M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.

    Article  CAS  Google Scholar 

  10. Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K. Mammalian target of rapamycin: hitting the bull’s-eye for neurological disorders. Oxid Med Cell Longev. 2010;3:374–91.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chong ZZ, Maiese K. Mammalian target of rapamycin signaling in diabetic cardiovascular disease. Cardiovasc Diabetol. 2012;11:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell. 1993;73:585–96.

    Article  CAS  PubMed  Google Scholar 

  13. Sabatini DM, Pierchala BA, Barrow RK, Schell MJ, Snyder SH. The rapamycin and FKBP12 target (RAFT) displays phosphatidylinositol 4-kinase activity. J Biol Chem. 1995;270:20875–8.

    Article  CAS  PubMed  Google Scholar 

  14. Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. 2009;296:E592–602.

    Article  CAS  PubMed  Google Scholar 

  16. Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK. The TOR pathway comes of age. Biochim Biophys Acta. 2009;1790:1067–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harman D. The free radical theory of aging. Antioxid Redox Signal. 2003;5:557–61.

    Article  CAS  PubMed  Google Scholar 

  18. Masoro EJ. Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowl Environ. 2003;2003(8):RE2.

  19. Schrijvers EM, Witteman JC, Sijbrands EJ, Hofman A, Koudstaal PJ, Breteler MM. Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study. Neurology. 2010;75:1982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chatterjee S, Peters SA, Woodward M, Mejia Arango S, Batty GD, Beckett N, et al. Type 2 T2DM as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care. 2016;39:300–7.

    CAS  PubMed  Google Scholar 

  21. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, et al. Glucose levels and risk of dementia. N Engl J Med. 2013;369:540–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging. 2010;31:224–43.

    Article  CAS  PubMed  Google Scholar 

  23. Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36:811–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hölscher C. Drugs developed for treatment of T2DM show protective effects in Alzheimer’s and Parkinson’s diseases. Sheng Li Xue Bao. 2015;66:497–510.

    Google Scholar 

  25. Hölscher C. Potential role of glucagon-like peptide-1 (GLP-1) in neuroprotection. CNS Drugs. 2012;26:871–82.

    Article  PubMed  Google Scholar 

  26. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122:1316–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de la Monte SM, Re E, Longato L, Tong M. Dysfunctional pro-ceramide, ER stress, and insulin/IGF signaling networks with progression of Alzheimer’s disease. J Alzheimers Dis. 2012;2:S217–29.

    Google Scholar 

  28. de la Monte SM, Longato L, Tong M, Wands JR. Insulin resistance and neurodegeneration: roles of obesity, type 2 T2DM mellitus and non-alcoholic steatohepatitis. Curr Opin Investig Drugs. 2009;10:1049–60.

    PubMed  PubMed Central  Google Scholar 

  29. Hoyer S. Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. Adv Exp Med Biol. 2004;541:135–52.

    Article  CAS  PubMed  Google Scholar 

  30. de la Monte SM, Tong M. Mechanisms of nitrosamine mediated neurodegeneration: potential relevance to sporadic Alzheimer’s disease. J Alzheimers Dis. 2009;17:817–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Labak M, Foniok T, Kirk D, Rushforth D, Tomanek B, Jasiński A, et al. Metabolic changes in rat brain following intracerebroventricular injections of streptozotocin: a model of sporadic Alzheimer’s disease. Acta Neurochir Suppl. 2010;106:177–81.

    Article  CAS  PubMed  Google Scholar 

  32. Gao C, Liu Y, Li L, Hölscher C. New animal models of Alzheimer’s disease that display insulin desensitization in the brain. Rev Neurosci. 2013;24:607–15.

    CAS  PubMed  Google Scholar 

  33. Porter WD, Flatt PR, Hölscher C, Gault VA. Liraglutide improves hippocampal synaptic plasticity associated with increased expression of Mash1 in ob/ob mice. Int J Obes Lond. 2013;37:678–84.

    Article  CAS  PubMed  Google Scholar 

  34. Asakawa A, Inui A, Inui T, Katsuura G, Fujino MA, Kasuga M. Leptin treatment ameliorates anxiety in ob/ob obese mice. J Diabetes Complicat. 2003;17:105–7.

    Article  PubMed  Google Scholar 

  35. Kim B, Backus C, Oh S, Feldman EL. Hyperglycemia-induced Tau cleavage in vitro and in vivo: a possible link between T2DM and Alzheimer’s disease. J Alzheimers Dis. 2013;34:727–39.

    CAS  PubMed  Google Scholar 

  36. Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, et al. T2DM-accelerated memory dysfunction viacerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with T2DM. Proc Natl Acad Sci USA. 2010;107:7036–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farr SA, Banks WA, Morley JE. Effects of leptin on memory processing. Peptides. 2006;27:1420–5.

    Article  CAS  PubMed  Google Scholar 

  38. Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience. 2002;113:607–15.

    Article  CAS  PubMed  Google Scholar 

  39. Oomura Y, Hori N, Shiraishi T, Fukunaga K, Takeda H, Tsuji M, et al. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats. Peptides. 2006;27:2738–49.

    Article  CAS  PubMed  Google Scholar 

  40. Knight DS, Mahajan DK, Qiao X. Dietary fat up-regulates the apolipoprotein E mRNA level in the Zucker lean rat brain. NeuroReport. 2001;12:3111–5.

    Article  CAS  PubMed  Google Scholar 

  41. Doherty GH, Beccano-Kelly D, Yan SD, Gunn-Moore FJ, Harvey J. Leptin prevents hippocampal synaptic disruption and neuronal cell death induced by amyloid beta. Neurobiol Aging. 2013;34:226–37.

    Article  CAS  PubMed  Google Scholar 

  42. Pedrini S, Thomas C, Brautigam H, Schmeidler J, Ho L, Fraser P, et al. Dietary composition modulates brain mass and solubilizable Abeta levels in a mouse model of aggressive Alzheimer’s amyloid pathology. Mol Neurodegener. 2009;4:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hiltunen M, Khandelwal VK, Yaluri N, Tiilikainen T, Tusa M, Koivisto H, et al. Contribution of genetic and dietary insulin resistance to Alzheimer phenotype in APP/PS1 transgenic mice. J Cell Mol Med. 2012;16:1206–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Julien C, Tremblay C, Phivilay A, Berthiaume L, Emond V, Julien P, et al. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging. 2010;31:1516–31.

    Article  CAS  PubMed  Google Scholar 

  45. Blokland A, Jolles J. Behavioral and biochemical effects of an ICV injection of streptozotocin in old Lewis rats. Pharmacol Biochem Behav. 1994;47:833–7.

    Article  CAS  PubMed  Google Scholar 

  46. Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci. 1998;112:1199–208.

    Article  CAS  PubMed  Google Scholar 

  47. Saxena G, Patro IK, Nath C. ICV STZ induced impairment in memory and neuronal mitochondrial function: a protective role of nicotinic receptor. Behav Brain Res. 2011;224:50–7.

    Article  CAS  PubMed  Google Scholar 

  48. Salkovic-Petrisic M, Hoyer S. Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl. 2007;72:217–33.

    Article  CAS  Google Scholar 

  49. Chen Y, Tian Z, Liang Z, Sun S, Dai CL, Lee MH, et al. Brain gene expression of a sporadic (icv-STZ Mouse) and a familial mouse model (3xTg-AD mouse) of Alzheimer’s disease. PLoS One. 2012;7:e51432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Watson GS, Peskind ER, Asthana S, Purganan K, Wait C, Chapman D, et al. Insulin increases CSF Abeta 42 levels in normal older adults. Neurology. 2003;60:1899–903.

    Article  CAS  PubMed  Google Scholar 

  51. Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci. 2002;22:rc221.

    PubMed  Google Scholar 

  52. Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast. 2005;12:311–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gasparini L, Netzer WJ, Greengard P, Xu H. Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci. 2002;23:288–93.

    Article  CAS  PubMed  Google Scholar 

  54. Tiwari SK, Seth B, Agarwal S, Yadav A, Karmakar M, Gupta SK, et al. Ethosuximide induces hippocampal neurogenesis and reverses cognitive deficits in an amyloid-β toxin-induced alzheimer rat model via the phosphatidylinositol 3-kinase (PI3K)/Akt/Wnt/β-Catenin pathway. J Biol Chem. 2015;290:28540–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hoyer S, Lannert H, Nöldner M, Chatterjee SS. Damaged neuronal energy metabolism and behavior are improved by Ginkgo biloba extract (EGb761). J Neural Transm. 1999;106:1171–88.

    Article  CAS  PubMed  Google Scholar 

  56. de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis. 2005;7:45–61.

    Article  PubMed  Google Scholar 

  57. de la Monte SM. Type 3 T2DM is sporadic Alzheimer’s disease: mini-review. Eur Neuropsychopharmacol. 2014;24:1954–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Friedland RP, Jagust WJ, Huesman RH, Koss E, Knittel B, Mathis CA, et al. Regional cerebral glucose transport and utilization in Alzheimer’s disease. Neurology. 1989;39:1427–34.

    Article  CAS  PubMed  Google Scholar 

  59. Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with pre T2DM or early type 2 T2DM. Arch Neurol. 2011;68:51–7.

    Article  PubMed  Google Scholar 

  60. Hölscher C. T2DM as a risk factor for Alzheimer’s disease: insulin signalling impairment in the brain as an alternative model of Alzheimer’s disease. Biochem Soc Trans. 2011;39:891–7.

    Article  PubMed  CAS  Google Scholar 

  61. Sandhir R, Gupta S. Molecular and biochemical trajectories from T2DM to Alzheimer’s disease: a critical appraisal. World J Diabetes. 2015;6(12):1223–42.

    PubMed  PubMed Central  Google Scholar 

  62. Shingo AS, Kanabayashi T, Kito S, Murase T. Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats. Behav Brain Res. 2013;241:105–11.

    Article  CAS  PubMed  Google Scholar 

  63. Serbedžija P, Ishii DN. Insulin and insulin-like growth factor prevent brain atrophy and cognitive impairment in diabetic rats. Indian J Endocrinol Metab. 2012;16:s601–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Osborne C, West E, Nolan W, McHale-Owen H, Williams A, Bate C. Glimepiride protects neurons against amyloid-β-induced synapse damage. Neuropharmacology. 2016;101:225–36.

    Article  CAS  PubMed  Google Scholar 

  65. Cooper GJ. Therapeutic potential of copper chelation with triethylenetetramine in managing T2DM mellitus and Alzheimer’s disease. Drugs. 2011;71:1281–320.

    Article  CAS  PubMed  Google Scholar 

  66. Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P. Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov Med. 2013;16:277–86.

    PubMed  Google Scholar 

  67. Mielke JG, Taghibiglou C, Wang YT. Endogenous insulin signaling protects cultured neurons from oxygen-glucose deprivation-induced cell death. Neuroscience. 2006;143:165–73.

    Article  CAS  PubMed  Google Scholar 

  68. Gupta A, Bisht B, Dey CS. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s like changes. Neuropharmacology. 2011;60:910–20.

    Article  CAS  PubMed  Google Scholar 

  69. Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimer Dis. 2011;24:485–93.

    CAS  Google Scholar 

  70. Khanfar MA, AbuLhader MM, Alqtaishat S, Taha MO. Pharmacophore modeling, homology modeling, and in silico screening reveal mammalian garget of rapamycin inhibitory activities for sotalol, glyburide, metipranolol, sulfamethizole, glipizide, and pioglitazone. J Mol Graph Model. 2013;42:39–49.

    Article  CAS  PubMed  Google Scholar 

  71. Pandini G, Pace V, Copani A, Squatrito S, Milardi D, Vigneri R. Insulin has multiple antiamyloidogenic effect on human neuronal cells. Endocrinology. 2013;154:375–87.

    Article  CAS  PubMed  Google Scholar 

  72. Reger MA, Watson GS, Frey WH 2nd, Baker LD, Cholerton B, Keeling ML, et al. Effects of intranasal insulin on coginition in memory-impaired older adults: modulation by APOE genotype. Neurobil Aging. 2006;27:451–8.

    Article  CAS  Google Scholar 

  73. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, et al. Protection of synapses against Alzeimer’s-liked toxins: insulin signaling prevents the pathogenic binding of A beta oligomers. Proc Natl Acad Sci USA. 2009;106:1971–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pathan AR, Viswanad B, Sonkusare SK, Ramarao P. Chronic administration of pioglitazone attenuates intracerebroventricularstreptozotocin induced-memory impaiment in rat. Life Sci. 2006;79:2209–16.

    Article  CAS  PubMed  Google Scholar 

  75. Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate S, Asthana S, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosglitazone: a preliminary study. Am J Geriatr Psychiatry. 2005;13:950–8.

    PubMed  Google Scholar 

  76. Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, et al. Rosiglitazome in Alzheimer’s disease study group. Efficacy of rosiglitazome in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 2006;6:246–54.

    CAS  PubMed  Google Scholar 

  77. Li L, Zhang ZF, Holscher C, Gao C, Jiang YH, Liu YZ. (Val8) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. Eur J Pharmacol. 2012;674:280–6.

    Article  CAS  PubMed  Google Scholar 

  78. McClean PL, Jalewa J, Hölscher C. Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behav Brain Res. 2015;293:96–106.

    Article  CAS  PubMed  Google Scholar 

  79. Matteucci E, Giampietro O. Mechanisms of neurodegeration in type 2 T2DM and the neuroprotective potential of dipeptidyl peptidase 4 inhibitors. Curr Med Chem. 2015;22:1573–81.

    Article  CAS  PubMed  Google Scholar 

  80. Liu W, Li G, Hölscher C, Li L. Neuroprotective effects of geniposide on Alzheimer’s disease pathology. Rev Neurosci. 2015;26:371–83.

    PubMed  Google Scholar 

  81. Gao C, Liu Y, Jiang Y, Ding J, Li L. Geniposide ameliorates learning memory deficits, reduces tau phosphorylation and decreases apoptosis via GSK3β pathway in streptozotocin-induced alzheimer rat model. Brain Pathol. 2014;24:261–9.

    Article  CAS  PubMed  Google Scholar 

  82. Hwang SK, Kim HH. The functions of mTOR in ischemic diseases. BMB Rep. 2011;44:506–11.

    Article  CAS  PubMed  Google Scholar 

  83. Chang YY, Juhasz G, Goraksha-Hicks P, Arsham AM, Mallin DR, Muller LK, et al. Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. Biochem Soc Trans. 2009;37:232–6.

    Article  CAS  PubMed  Google Scholar 

  84. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Disease. 2010;1:e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet. 2006;15:433–42.

    Article  CAS  PubMed  Google Scholar 

  86. Caccamo A, De Pinto V, Messina A, Branca C, Oddo S. Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J Neurosci. 2014;34:7988–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maiese K. Driving neural regeneration through the mammalian target of rapamycin. Neural Regen Res. 2014;9:1413–7.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Caccamo A, Magrì A, Medina DX, Wisely EV, López-Aranda MF, Silva AJ, et al. mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell. 2013;12:370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Magri L, Cambiaghi M, Cominelli M, Alfaro-Cervello C, Cursi M, Pala M, et al. Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell. 2011;9:447–62.

    Article  CAS  PubMed  Google Scholar 

  90. Hartman NW, Lin TV, Zhang L, Paquelet GE, Feliciano DM, Bordey A. mTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell self-renewal in vivo. Cell Rep. 2013;5:433–44.

    Article  CAS  PubMed  Google Scholar 

  91. Malagelada C, López-Toledano MA, Willett RT, Jin ZH, Shelanski ML, Greene LA. RTP801/REDD1 regulates the timing of cortical neurogenesis and neuron migration. J Neurosci. 2011;31:3186–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Han J, Wang B, Xiao Z, Gao Y, Zhao Y, Zhang J, et al. Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol Cell Neurosci. 2008;39:118–24.

    Article  CAS  PubMed  Google Scholar 

  93. Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol. 2004;24:9508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maiese K. Cutting through the complexities of mTOR for the treatment of stroke. Curr Neurovasc Res. 2014;11:177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shang YC, Chong ZZ, Wang S, Maiese K. Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res. 2013;10:29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Choi KC, Kim SH, Ha JY, Kim ST, Son JH. A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death. J Neurochem. 2010;112:366–76.

    Article  CAS  PubMed  Google Scholar 

  97. Santini E, Heiman M, Greengard P, Valjent E, Fisone G, et al. Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal. 2009;2:ra36.

    Article  PubMed  Google Scholar 

  98. Zhu Y, Wang J. Wogonin increases β-amyloid clearance and inhibits tau phosphorylation via inhibition of mammalian target of rapamycin: potential drug to treat Alzheimer’s disease. Neurol Sci. 2015;36:1181–8.

    Article  PubMed  Google Scholar 

  99. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One. 2010;5:e9979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Zare Mehrjerdi F, Aboutaleb N, Habibey R, Ajami M, Soleimani M, Arabian M, et al. Increased phosphorylation of mTOR is involved in remote ischemic preconditioning of hippocampus in mice. Brain Res. 2013;1526:94–101.

    Article  CAS  PubMed  Google Scholar 

  101. Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature. 2010;464:529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu P, Jiang C, Shen Q, Hu Y. Systematic gene expression profile of hypothalamus in calorie-restricted mice implicates the involvement of mTOR signaling in neuroprotective activity. Mech Ageing Dev. 2009;130:602–10.

    Article  CAS  PubMed  Google Scholar 

  103. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med. 2008;14:843–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci. 2009;12:1152–8.

    Article  CAS  PubMed  Google Scholar 

  105. Ramírez AE, Pacheco CR, Aguayo LG, Opazo CM. Rapamycin protects against Aβ-induced synaptotoxicity by increasing presynaptic activity in hippocampal neurons. Biochim Biophys Acta. 2014;1842:1495–501.

    Article  PubMed  CAS  Google Scholar 

  106. Lafay-Chebassier C, Pérault-Pochat MC, Page G, RiouxBilan A, Damjanac M, Pain S, et al. The immunosuppressant rapamycin exacerbates neurotoxicity of A beta peptide. J Neurosci Res. 2006;84:1323–34.

    Article  CAS  PubMed  Google Scholar 

  107. Ma T, Hoeffer CA, Capetillo-Zarate E, Yu F, Wong H, Lin MT, et al. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease. PLoS One. 2010;5:e12845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, et al. Macroautophagy: a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol. 2005;171:87–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang S, Salemi J, Hou H, Zhu Y, Mori T, Giunta B, et al. Rapamycin promotes beta-amyloid production via ADAM-10 inhibition. Biochem Biophys Res Commun. 2010;398:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bhaskar K, Miller M, Chludzinski A, Herrup K, Zagorski M, Lamb BT. The PI3K-Akt-mTOR pathway regulates A beta oligomer induced neuronal cell cycle events. Mol Neurodegener. 2009;4:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem. 2010;285:13107–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li X, Alafuzoff I, Soininen H, Winblad B, Pei JJ. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J. 2005;272:4211–20.

    Article  CAS  PubMed  Google Scholar 

  113. Julien C, Tremblay C, Emond V, Lebbadi M, Salem N Jr, Bennett DA, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol. 2009;68:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang C, Zhang X, Teng Z, Zhang T, Li Y. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur J Pharmacol. 2014;740:312–20.

    Article  CAS  PubMed  Google Scholar 

  115. Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem. 2015;133:739–49.

    Article  CAS  PubMed  Google Scholar 

  116. Wang Y, Wang YX, Liu T, Law PY, Loh HH, Qiu Y, et al. μ-Opioid receptor attenuates Aβ oligomers-induced neurotoxicity through mTOR signaling. CNS Neurosci Ther. 2015;21:8–14.

    Article  CAS  PubMed  Google Scholar 

  117. Yamamoto N, Tanida M, Kasahara R, Sobue K, Suzuki K. Leptin inhibits amyloid β-protein fibrillogenesis by decreasing GM1 gangliosides on the neuronal cell surface through PI3K/Akt/mTOR pathway. J Neurochem. 2014;131:323–32.

    Article  CAS  PubMed  Google Scholar 

  118. Caccamo A, Branca C, Talboom JS, Shaw DM, Turner D, Ma L, et al. reducing ribosomal protein S6 kinase 1 expression improves spatial memory and synaptic plasticity in a mouse model of Alzheimer’s disease. J Neurosci. 2015;35:14042–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, et al. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature. 2000;408:994–7.

    Article  CAS  PubMed  Google Scholar 

  120. Hamada S, Hara K, Hamada T, Yasuda H, Moriyama H, Nakayama R, et al. Upregulation of the mammalian target of rapamycin complex 1 pathway by Ras homolog enriched in brain in pancreatic beta-cells leads to increased beta-cell mass and prevention of hyperglycemia. Diabetes. 2009;58:1321–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 T2DM. Diabetes. 2008;57:945–57.

    Article  CAS  PubMed  Google Scholar 

  122. Deblon N, Bourgoin L, Veyrat-Durebex C, Peyrou M, Vinciguerra M, Caillon A, et al. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. Br J Pharmacol. 2012;165(7):2325–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004;166:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kwon G, Marshall CA, Pappan KL, Remedi MS, McDaniel ML. Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes. 2004;3:S225–32.

    Article  Google Scholar 

  125. Hurtado-Carneiro V, Sanz C, Roncero I, Vazquez P, Blazquez E, Alvarez E. Glucagon-like peptide 1 (GLP-1) can reverse AMP-activated protein kinase (AMPK) and S6 kinase (P70S6K) activities induced by fluctuations in glucose levels in hypothalamic areas involved in feeding behaviour. Mol. Neurobiol. 2012;45:348–561.

    Article  CAS  PubMed  Google Scholar 

  126. Xie J, El Sayed NM, Qi C, Zhao X, Moore CE, Herbert TP. Exendin-4 stimulates islet cell replication via the IGF1 receptor activation of mTORC1/S6K1. J. Mol. Endocrinol. 2014;53:105–15.

    Article  CAS  PubMed  Google Scholar 

  127. Jiang T, Yu JT, Zhu XC, Tan MS, Wang HF, Cao L, et al. Temsirolimus promotes autophagic clearance of amyloid-β and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol Res. 2014;81:54–63.

    Article  CAS  PubMed  Google Scholar 

  128. Kimura R, Okouchi M, Fujioka H, Ichiyanagi A, Ryuge F, Mizuno T, et al. Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience. 2009;162:1212–9.

    Article  CAS  PubMed  Google Scholar 

  129. Chang TJ, Tseng HC. Corrigendum: glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation. Sci Rep. 2016;31(6):26917.

    Article  CAS  Google Scholar 

  130. Nie J, Han X. Shi Y.SAD-A and AMPK kinases: the “yin and yang” regulators of mTORC1 signaling in pancreatic β cells. Cell Cycle. 2013;12:3366–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Burmeister MA, Ayala J, Drucker DJ, Ayala JE. Central glucagon-like peptide 1 receptor-induced anorexia requires glucose metabolism-mediated suppression of AMPK and is impaired by central fructose. Am J Physiol Endocrinol Metab. 2013;304:E677–85.

    Article  CAS  PubMed  Google Scholar 

  132. Lilley BN, Pan YA, Sanes JR. SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals. Neuron. 2013;79:39–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mori H, Inoki K, Opland D, Münzberg H, Villanueva EC, Faouzi M, et al. Critical roles for the TSC-mTOR pathway in β-cell function. Am J Physiol Endocrinol Metab. 2009;297:e1013–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev. 2005;19:2199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang SB, Lee HY, Young DM, Tien AC, Rowson-Baldwin A, et al. Rapamycin induces glucose intolerance in mice by reducing islet mass, insulin content, and insulin sensitivity. J Mol Med (Berl). 2012;90:575–85.

    Article  CAS  PubMed  Google Scholar 

  136. Nie J, Liu X, Lilley BN, Zhang H, Pan YA, Kimball SR, et al. SAD-A kinase controls islet β-cell size and function as a mediator of mTORC1 signaling. Proc Natl Acad Sci USA. 2013;110:13857–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nie J, Lilley BN, Pan YA, Faruque O, Liu X, Zhang W, et al. SAD-A potentiates glucose-stimulated insulin secretion as a mediator of glucagon-like peptide 1 response in pancreatic β cells. Mol Cell Biol. 2013;33:2527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xu WW, Guan MP, Zheng ZJ, Gao F, Zeng YM, Qin Y, et al. Exendin-4 alleviates high glucose-induced rat mesangial cell dysfunction through the AMPK pathway. Cell Physiol Biochem. 2014;33:423–32.

    Article  CAS  PubMed  Google Scholar 

  139. Briaud I, Lingohr MK, Dickson LM, Wrede CE, Rhodes CJ. Differential activation mechanisms of Erk-1/2 and p70(S6K) by glucose in pancreatic beta-cells. Diabetes. 2003;52:974–83.

    Article  CAS  PubMed  Google Scholar 

  140. Miao XY, Gu ZY, Liu P, Hu Y, Li L, Gong YP, et al. The human glucagon-like peptide-1 analogue liraglutide regulates pancreatic beta-cell proliferation and apoptosis via an AMPK/mTOR/P70S6K signaling pathway. Peptides. 2013;39:71–9.

    Article  CAS  PubMed  Google Scholar 

  141. Zhang Y, Chen Y, Cheng J, Guo Z, Lu Y, Tian B. DPP IV inhibitor suppresses STZ-induced islets injury dependent on activation of the IGFR/Akt/mTOR signaling pathways by GLP-1 in monkeys. Biochem Biophys Res Commun. 2015;456:139–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Ethics declarations

Funding

This work was funded by the Ministry of Human Resources and Social Security, Shanxi province [(2010) 255]

Conflict of interest

Professor Lin Li has no conflicts of interest to report, financial or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L. The Molecular Mechanism of Glucagon-Like Peptide-1 Therapy in Alzheimer’s Disease, Based on a Mechanistic Target of Rapamycin Pathway. CNS Drugs 31, 535–549 (2017). https://doi.org/10.1007/s40263-017-0431-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-017-0431-2

Navigation