Skip to main content
Log in

When is it OK to Stop Anti-Programmed Death 1 Receptor (PD-1) Therapy in Metastatic Melanoma?

  • Current Opinion
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Systemic therapy for metastatic melanoma has been revolutionized over the past decade with the development of highly effective immune checkpoint inhibition, specifically anti-Programmed Death 1 receptor (PD-1) therapy. However, even though one-third of patients will have durable response to single-agent or combination therapy, the optimal duration of therapy is unknown. Identifying the optimal duration of therapy is important, as exposure to anti-PD-1 therapy increases the risk of developing immune-mediated toxicities that can have significant morbidity and are, at times, fatal. It has long been understood that patients with complete responses to high-dose interleukin-2 and ipilimumab typically maintain their responses after a brief treatment course; thus, it is important to better understand the data to help understand the optimal management of melanoma patients treated with anti-PD-1 therapy. The clinical data with anti-PD-1-based therapy and published data on the duration of therapy suggest that patients may not require a full 2 years of anti-PD-1 therapy and that the risk of toxicity may be mitigated by further understanding the mechanisms and kinetics of response to therapy. Although novel markers to help guide therapeutic decision making are under investigation, there is an ongoing need to improve our tools to monitor response to therapy and disease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freeman B, Long A, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.

    Article  CAS  Google Scholar 

  2. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 2002;99:12293–7.

    Article  CAS  Google Scholar 

  3. Hamid O, Robert C, Daud A, Hodi F, Hwu W, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.

    Article  CAS  Google Scholar 

  4. Topalian S, Sznol M, McDermott D, Kluger H, Carvajal R, Sharfman W, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–31.

    Article  CAS  Google Scholar 

  5. Spigel D, McLeod M, Hussein MA, Waterhouse DM, Einhorn L, Horn L, et al. Randomized results of fixed-duration (1-yr) vs continuous nivolumab in patients (pts) with advanced non-small cell lung cancer (NSCLC) (abstract no. 1297O). ESMO 2017 congress, 8–12 Sep 2017, Madrid.

  6. Mier JW, Gallo RC. Purification and some characteristics of human T-cell growth factor from phytohemagglutinin-stimulated lymphocyte-conditioned media. Proc Nat Acad Sci USA. 1980;77(10):6134–8.

    Article  CAS  Google Scholar 

  7. Parkinson D, Abrams J, Wiernik P, Rayner A, Margolin K, Van Echo D, et al. Interleukin-2 therapy in patients with metastatic malignant melanoma: a phase II study. J Clin Oncol. 1990;8:1650–6.

    Article  CAS  Google Scholar 

  8. Rosenberg S, Yang K, Topalian S, Schwartzentruber D, Weber J, Parkinson D, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 1994;271(12):907–13.

    Article  CAS  Google Scholar 

  9. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–16.

    Article  CAS  Google Scholar 

  10. Curti B, Daniels GA, McDermott DF, Clark JI, Kaufman HL, Logan TF, et al. Improved survival and tumor control with Interleukin-2 is associated with the development of immune-related adverse events: data from the PROCLAIM(SM) registry. J Immunother Cancer. 2017;5(1):102.

    Article  Google Scholar 

  11. Joseph RW, Sullivan RJ, Harrell R, Stemke-Hale K, Panka D, Manoukian G, et al. Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother. 2012;35(1):66–72.

    Article  CAS  Google Scholar 

  12. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  Google Scholar 

  13. Lebbé C, Weber JS, Maio M, Neyns B, Harmankaya K, Hamid O, et al. Survival follow-up and ipilimumab retreatment of patients with advanced melanoma who received ipilimumab in prior phase II studies. Ann Oncol. 2014;25(11):2277–84.

    Article  Google Scholar 

  14. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–94.

    Article  CAS  Google Scholar 

  15. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.

    Article  CAS  Google Scholar 

  16. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomized, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.

    Article  CAS  Google Scholar 

  17. Weber J, D’Angelo S, Minor D, Hodi F, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomized, controlled, open-label, phase 3 trial. Lanced Oncol. 2015;16:375–84.

    Article  CAS  Google Scholar 

  18. Robert C, Long G, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    Article  CAS  Google Scholar 

  19. Robert C, Schachter J, Long G, Arance A, Grob J, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  Google Scholar 

  20. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J, Cowey L, Lao C, et al. Combined nivolumab and ipilimumab or monotherapy in previously untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  Google Scholar 

  21. Hamid O, Robert C, Daud A, Hodi F, Hwu W, Kefford R, et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol. 2019;30(4):582–8.

    Article  CAS  Google Scholar 

  22. Robert C, Ribas A, Schachter J, Arance A, Grob J, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label multicenter, randomized, controlled, phase 3 study. Lancet Oncol. 2019;20(9):1239–51.

    Article  CAS  Google Scholar 

  23. Hodi F, Chiarion-Sileni V, Gonzalez R, Grob J, Rutkowski P, Cowey C, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomized, phase 3 trial. Lancet Oncol. 2018;19:1480–92.

    Article  CAS  Google Scholar 

  24. Jansen Y, Rozeman E, Mason R, Goldinger S, Foppen M, Hoejberg L, et al. Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity; clinical outcomes in advanced melanoma. Ann Oncol. 2019;30(7):1154–61.

    Article  CAS  Google Scholar 

  25. Iivanainen S, Koivunen J. Early PD-1 therapy discontinuation in responding metastatic cancer patients. Oncology. 2019;96:125–31.

    Article  Google Scholar 

  26. Palmieri G, Strazzullo M, Ascierto P, Satriano S, Daponte A, Castello G. Polymerase chain reaction-based detection of circulating melanoma cells as an effective marker of tumor progression. J Clin Oncol. 1999;17:304–11.

    Article  CAS  Google Scholar 

  27. Hoshimoto S, Faries M, Morton D, Shingai T, Kuo C, Wang H, et al. Assessment of prognostic circulating tumor cells in a phase III trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann Surg. 2012;255(2):357–62.

    Article  Google Scholar 

  28. Hong X, Sullivan R, Kalinich M, Kwan T, Giobbie-Hurder A, Pan S, et al. Molecular signatures of circulating melanoma cells for monitoring early response to immune checkpoint therapy. Proc Natl Acad Sci USA. 2018;115(10):2467–72.

    Article  CAS  Google Scholar 

  29. Bettegowda C, Sausen M, Leary R, Kinde I, Wang Y, Argawal N, et al. Detection of circulating tumor DNA in early and late-stage human malignancies. Sci Transl Med. 2014;6(225):1–11.

    Google Scholar 

  30. Gray E, Rizos H, Reid A, Boyd S, Pereira M, Lo K, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015;6(39):42008–17.

    Article  Google Scholar 

  31. Lee J, Long G, Boyd S, Menzies A, Tembe V, Guminski A, et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol. 2017;28:1130–6.

    Article  CAS  Google Scholar 

  32. Lee J, Long G, Menzies A, Lo S, Guminski A, Whitbourne K, et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma with anti-programmed cell death antibodies. JAMA Oncol. 2018;4(5):717–21.

    Article  Google Scholar 

  33. Diamantopoulos P, Gaggadi M, Kassi E, Benopoulou O, Anastasopoulou A, Gogas H. Late-onset nivolumab-mediated pneumonitis in a patient with melanoma and multiple immune-related adverse events. Melanoma Res. 2017;27:391–5.

    Article  Google Scholar 

  34. Cho S, Lipson E, Im HJ, Rowe S, Gonzalez E, Blackford A, et al. Prediction of response to immune checkpoint inhibitor therapy using early-time-point 18F-FDG PET/CT imaging in patients with advanced melanoma. J Nucl Med. 2017;58(9):1421–8.

    Article  CAS  Google Scholar 

  35. Amrane K, Le Goupil D, Quere G, Delcroix O, Gouva S, Schick U, et al. Prediction of response to immune checkpoint inhibitor therapy using 18F-FDG PET/CT in patients with melanoma. Medicine (Baltimore). 2019;98(29):1–12.

    Article  Google Scholar 

  36. Tan A, Emmet L, Lo S, Liu V, Kapoor R, Carlino M, et al. FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma. Ann Oncol. 2018;29:2115–20.

    Article  CAS  Google Scholar 

  37. Seban R, Nemer J, Marabelle A, Yeh R, Deutsch E, Ammari S, et al. Prognostic and theranostic 18F-FDG PET biomarkers for anti-PD1 immunotherapy in metastatic melanoma: association with outcome and transcriptomics. Eur J Nucl Med Mol Imaging. 2019;46:2298–310.

    Article  CAS  Google Scholar 

  38. Ito K, Teng R, Schoder H, Humm J, Ni A, Michaud L, et al. 18F-FDG-PET/CT for monitoring of ipilimumab therapy in patients with metastatic melanoma. J Nucl Med. 2019;60(3):335–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan J. Sullivan.

Ethics declarations

Conflict of interest

Lauren B. Banks declares that she has no conflicts of interest that might be relevant to the contents of this manuscript. Ryan J. Sullivan reports receiving research support from Merck and Amgen, has served as an independent monitor of a trial funded by Boehringer Ingelheim, and has served as a consultant for Array BioPharma, Amgen, Asana Biosciences, Bristol Myers Squibb, Novartis, Genentech, Replimune, and Compugen.

Funding

No external funding was used in the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banks, L.B., Sullivan, R.J. When is it OK to Stop Anti-Programmed Death 1 Receptor (PD-1) Therapy in Metastatic Melanoma?. Am J Clin Dermatol 21, 313–321 (2020). https://doi.org/10.1007/s40257-020-00506-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-020-00506-2

Navigation