Skip to main content
Log in

Simultaneous removal of phenoxy herbicides, 2-methyl-4-chlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid from aqueous media by magnetized MgAl-LDH@Fe3O4 composite: application of partial least squares and Doehlert experimental design

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Today, the excessive and increasing use of phenoxy family herbicides such as 2-methyl-4-chlorophenoxyacetic acid (MCPA) and (2,4- dichlorophenoxy) acetic acid (2,4-DCPA) for reasons such as indestructibility and pollution of groundwater resources is one of the most important environmental problems. Pesticide adsorbents like layered double hydroxides (LDHs) are commonly utilized due to their straightforward synthesis, substantial specific surface area resulting from their layered structure, and the potential for surface modification. These natural minerals serve as effective options for adsorption. In this study, a co-precipitation approach was used to create an MgAl-LDH@Fe3O4 magnetic adsorbent for the simultaneous removal of MCPA and 2,4-DCPA herbicides from aqueous solution. Using different techniques such as TGA, XRD, FESEM, EDS and zeta potential, we investigated the properties of the prepared adsorbent. The partial least squares method measures the concentration of each herbicide in their mixture. The optimization of MCPA and 2,4-DCPA simultaneous adsorption by LDH was achieved through Doehlert experimental design and the response surface method. The optimal conditions for absorption were determined to be an adsorbent dose of 40.20 mg L-1, a pH of 6.8, and an initial concentration of 28.35 mg L-1. In this work, the equilibrium, kinetic, and thermodynamic absorption data of the absorption process were studied, and the obtained results were well described by the Freundlich model, and the pseudo-second-order model, respectively, and showed the spontaneity of the absorption process in this research. The highest absorption capacities of MCPA and 2.4-DCPA herbicides on the prepared adsorbent were 134.50 and 131.30 mg g-1, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article or its supplementary materials.

References

  1. Amenyogbe E, Huang JS, Chen G, Wang Z. An overview of the pesticides’ impacts on fishes and humans. Int J Aquat Biol. 2021;9(1):55–65. https://doi.org/10.22034/ijab.v9i1.972.

    Article  Google Scholar 

  2. Kumar V, Kumar P. Pesticides in agriculture and environment: impacts on human health. Contam Agric Environ: Health Risks Remediation. 2019;1:76–95.

    Google Scholar 

  3. Esrafily A, Farzadkia M, Jonidi Jafari A, Izanloo M. Removal of 2, 4-Dichlorophenoxyacetic acid herbicide from aqueous solutions by functionalization nanoparticles magnetic: equilibrium, kinetic and thermodynamic studies. J North Khorasan Univ Med Sci. 2018;9(4):1–8.

    Google Scholar 

  4. Reade JP, Cobb AH. Herbicides: modes of action and metabolism. Weed Manage Handb. 2002;9:134–70.

    Article  Google Scholar 

  5. Chávez-Moreno C, Ferrer L, Hinojosa-Reyes L, Hernández-Ramírez A, Cerdà V, Guzmán-Mar J. On-line monitoring of the photocatalytic degradation of 2, 4-D and dicamba using a solid-phase extraction-multisyringe flow injection system. J Environ Manage. 2013;129:377–83.

    Article  Google Scholar 

  6. CrespÍn MA, Gallego M, Valcárcel M, González JL. Study of the degradation of the herbicides 2, 4-D and MCPA at different depths in contaminated agricultural soil. Environ Sci Technol. 2001;35(21):4265–70.

    Article  Google Scholar 

  7. Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, Webster TM, Barrett M. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. 2012;60(SP1):31–62. https://doi.org/10.1614/WS-D-11-00155.1.

    Article  CAS  Google Scholar 

  8. Pandiarajan A, Kamaraj R, Vasudevan S, Vasudevan S. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresour Technol. 2018;261:329–41.

    Article  CAS  Google Scholar 

  9. Aksu Z, Kabasakal E. Batch adsorption of 2, 4-dichlorophenoxy-acetic acid (2, 4-D) from aqueous solution by granular activated carbon. Sep Purif Technol. 2004;35(3):223–40.

    Article  CAS  Google Scholar 

  10. Kuśmierek K, Sankowska M, Świątkowski A. Kinetic and equilibrium studies of simultaneous adsorption of monochlorophenols and chlorophenoxy herbicides on activated carbon. Desalination Water Treat. 2014;52(1–3):178–83.

    Article  Google Scholar 

  11. Derylo-Marczewska A, Blachnio M, Marczewski A, Swiatkowski A, Tarasiuk B. Adsorption of selected herbicides from aqueous solutions on activated carbon. J Therm Anal Calorim. 2010;101(2):785–94.

    Article  CAS  Google Scholar 

  12. Loomis D, Guyton K, Grosse Y, El Ghissasi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K. Carcinogenicity of lindane, DDT, and 2, 4-dichlorophenoxyacetic acid. Lancet Oncol. 2015;16(8):891–2.

    Article  CAS  Google Scholar 

  13. Tanaka K, Reddy KSN. Photodegradation of phenoxyacetic acid and carbamate pesticides on TiO2. Appl Catal B. 2002;39(4):305–10.

    Article  CAS  Google Scholar 

  14. Abdullah AH, Mun LK, Zainal Z, Hussein MZ. Photo-degradation of chlorophenoxyacetic acids by ZnO/γ-Fe2O3 nanocatalysts: a comparative study. Int J Chem. 2013;5:56–65. https://doi.org/10.5539/ijc.v5n4p56.

    Article  CAS  Google Scholar 

  15. Costa C, Maia S, Silva P, Garrido J, Borges F, Garrido EM. Photostabilization of phenoxyacetic acid herbicides MCPA and mecoprop by hydroxypropyl-β-cyclodextrin. Int J Photoenergy. 2013.

  16. Rahemi V, Garrido JMPJ, Borges F, Brett CMA, Garrido EMPJ. Electrochemical sensor for simultaneous determination of herbicide MCPA and its metabolite 4-chloro-2-methylphenol. Application to photodegradation environmental monitoring. Environ Sci Pollut Res. 2015;22(6):4491–9.

    Article  CAS  Google Scholar 

  17. Mostafa GA. Electrochemical biosensors for the detection of pesticides. Open Electrochem J. 2010;2(1). https://doi.org/10.2174/1876505X01002010022.

  18. Hemmett RB, Faust SD. Biodegradation kinetics of 2, 4-dichlorophenoxyacetic acid by aquatic microorganisms. Decontamination Pesticide Residues Environ. 1969;191–207. https://doi.org/10.1007/978-1-4615-8455-1_13.

  19. Kuhlmann B, Kaczmarzcyk B. Biodegradation of the herbicides 2, 4-dichlorophenoxyacetic acid, 2, 4, 5‐trichlorophenoxyacetic acid, and 2‐methyl‐4‐chlorophenoxyacetic acid in a sulfate‐reducing aquifer. Environ Toxicol Water Qual. 1995;10(2):119–25.

    Article  CAS  Google Scholar 

  20. Belmouden M, Assabbane A, Ichou YA. Adsorption characteristics of a phenoxy acetic acid herbicide on activated carbon. J Environ Monit. 2000;2(3):257–60.

    Article  CAS  Google Scholar 

  21. Bailey GW, White JL, Rothberg T. Adsorption of organic herbicides by montmorillonite: role of pH and chemical character of adsorbate. Soil Sci Soc Am J. 1968;32(2):222–34.

    Article  CAS  Google Scholar 

  22. Ward TM, Getzen FM. Influence of pH on the adsorption of aromatic acids on activated carbon. Environ Sci Technol. 1970;4(1):64–7.

    Article  Google Scholar 

  23. Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ahmad A. Removal of pesticides from water and wastewater by different adsorbents: a review. J Environ Sci Health Part C. 2010;28(4):231–71.

    Article  CAS  Google Scholar 

  24. Castro CS, Guerreiro MC, Gonçalves M, Oliveira LC, Anastácio AS. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium. J Hazard Mater. 2009;164(2–3):609–14.

    Article  CAS  Google Scholar 

  25. Chang CF, Chang CY, Hsu KE, Lee SC, Höll W. Adsorptive removal of the pesticide methomyl using hypercrosslinked polymers. J Hazard Mater. 2008;155(1–2):295–304.

    Article  CAS  Google Scholar 

  26. Singh N. Adsorption of herbicides on coal fly ash from aqueous solutions. J Hazard Mater. 2009;168(1):233–7.

    Article  CAS  Google Scholar 

  27. Ghosh S, Das SK, Guha AK, Sanyal AK. Adsorption behavior of lindane on Rhizopus oryzae biomass: Physico-chemical studies. J Hazard Mater. 2009;172(1):485–90.

    Article  CAS  Google Scholar 

  28. Pavlovic I, Barriga C, Hermosín MC, Cornejo J, Ulibarri MA. Adsorption of acidic pesticides 2, 4-D, Clopyralid and Picloram on calcined hydrotalcite. Appl Clay Sci. 2005;30(2):125–33.

    Article  CAS  Google Scholar 

  29. Akçay G, Akçay M, Yurdakoç K. Removal of 2, 4-dichlorophenoxyacetic acid from aqueous solutions by partially characterized organophilic sepiolite: thermodynamic and kinetic calculations. J Colloid Interface Sci. 2005;281(1):27–32.

    Article  Google Scholar 

  30. Xi Y, Mallavarapu M, Naidu R. Adsorption of the herbicide 2, 4-D on organo-palygorskite. Appl Clay Sci. 2010;49(3):255–61.

    Article  CAS  Google Scholar 

  31. Mahramanlioglu M. Removal of MCPA (4-Chloro-2-Methylphenoxy-Acetic acid) from aqueous solutions using adsorbent produced from elutrilithe. Energy Sources. 2003;25(1):1–13.

    Article  CAS  Google Scholar 

  32. Tang S, Lee HK. Application of dissolvable layered double hydroxides as sorbent in dispersive solid-phase extraction and extraction by co-precipitation for the determination of aromatic acid anions. Anal Chem. 2013;85(15):7426–33.

    Article  CAS  Google Scholar 

  33. Ramakrishna KR, Viraraghavan T. Dye removal using low cost adsorbents. Water Sci Technol. 1997;36(2–3):189–96.

    Article  CAS  Google Scholar 

  34. Inacio J, Taviot-Gueho C, Forano C, Besse JP. Adsorption of MCPA pesticide by MgAl-layered double hydroxides. Appl Clay Sci. 2001;18(5–6):255–64.

    Article  CAS  Google Scholar 

  35. Bruna F, Celis R, Pavlovic I, Barriga C, Cornejo J, Ulibarri MA. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA): systems Mg–Al, Mg–Fe and Mg–Al–Fe. J Hazard Mater. 2009;168(2–3):1476–81.

    Article  CAS  Google Scholar 

  36. Chaara D, Pavlovic I, Bruna F, Ulibarri MA, Draoui K, Barriga C. Removal of nitrophenol pesticides from aqueous solutions by layered double hydroxides and their calcined products. Appl Clay Sci. 2010;50(3):292–8.

    Article  CAS  Google Scholar 

  37. Li F, Wang Y, Yang Q, Evans DG, Forano C, Duan X. Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution. J Hazard Mater. 2005;125(1–3):89–95.

    Article  CAS  Google Scholar 

  38. Zhang X, Wang Y, Yang S. Simultaneous removal of Co (II) and 1-naphthol by core–shell structured Fe3O4@ cyclodextrin magnetic nanoparticles. Carbohydr Polym. 2014;114:521–9. https://doi.org/10.1016/j.carbpol.2014.08.072.

    Article  CAS  Google Scholar 

  39. Zhao LX, Xiao H, Li MH, Xie M, Li N, Zhao RS. Effectively removing indole-3-butyric acid from aqueous solution with magnetic layered double hydroxide-based adsorbents. J Hazard Mater. 2021;408: 124446.

    Article  CAS  Google Scholar 

  40. Koilraj P, Sasaki K. Fe3O4/MgAl-NO3 layered double hydroxide as a magnetically separable sorbent for the remediation of aqueous phosphate. J Environ Chem Eng. 2016;4(1):984–91.

    Article  CAS  Google Scholar 

  41. Di X, Wang H, Guo X, Wang X, Liu Y. Magnetic layered double hydroxide/zeolitic imidazolate framework-8 nanocomposite as a novel adsorbent for enrichment of four endocrine disrupting compounds in milk samples. J Hazard Mater. 2022;421: 126753.

    Article  CAS  Google Scholar 

  42. Chen CL, Wang XK, Nagatsu M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ Sci Technol. 2009;43(7):2362–7.

    Article  CAS  Google Scholar 

  43. Chen C, Gunawan P, Xu R. Self-assembled Fe 3 O 4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water. J Mater Chem. 2011;21(4):1218–25.

    Article  CAS  Google Scholar 

  44. Gutierrez AM, Dziubla TD, Hilt JZ. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev Environ Health. 2017;32(1–2):111–7.

    Article  CAS  Google Scholar 

  45. Zhang X, Niu H, Pan Y, Shi Y, Cai Y. Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples. Anal Chem. 2010;82(6):2363–71.

    Article  CAS  Google Scholar 

  46. Shrivas K, Ghosale A, Nirmalkar N, Srivastava A, Singh SK, Shinde SS. Removal of endrin and dieldrin isomeric pesticides through stereoselective adsorption behavior on the graphene oxide-magnetic nanoparticles. Environ Sci Pollut Res. 2017;24(32):24980–8.

    Article  CAS  Google Scholar 

  47. Zhou Q, Lei M, Li J, Zhao K, Liu Y. Sensitive determination of bisphenol A, 4-nonylphenol and 4-octylphenol by magnetic solid phase extraction with Fe@ MgAl-LDH magnetic nanoparticles from environmental water samples. Sep Purif Technol. 2017;182:78–86.

    Article  CAS  Google Scholar 

  48. Saien J, Nasri M, Pourehie O. Enhanced activation of persulfate by magnetic CuFe-layered double hydroxide nanocomposites under visible light irradiation for degradation of quinoline. J Iran Chem Soc. 2022;19(4):1515–26. https://doi.org/10.1007/s13738-021-02400-y.

    Article  CAS  Google Scholar 

  49. Guo X, Li Y, Zhang B, Yang L, Di X. Development of dispersive solid phase extraction based on dissolvable Fe3O4-layered double hydroxide for high-performance liquid chromatographic determination of phenoxy acid herbicides in water samples. Microchem J. 2020;152:104443.

    Article  CAS  Google Scholar 

  50. Slutsky B, By DL, Massart BGM, Vandeginste LMC, Buydens S, De Jong PJ, Lewi J, Smeyers-Verbeke. Data Handling in Science and Technology Volume 20A. Elsevier: Amsterdam. Xvii + 867 pp. ISBN 0-444-89724-0. $293.25. J Chem Inf Comput Sci. 1997;38(6):1254–1254.

  51. Mou RX, Chen MX, Cao ZY, Zhu ZW. Simultaneous determination of triazine herbicides in rice by high-performance liquid chromatography coupled with high resolution and high mass accuracy hybrid linear ion trap-orbitrap mass spectrometry. Anal Chim Acta. 2011;706(1):149–56.

    Article  CAS  Google Scholar 

  52. Bodur S, Bakırdere EG. Simultaneous determination of selected herbicides in dam lake, river and well water samples by gas chromatography mass spectrometry after vortex assisted binary solvent liquid phase microextraction. Microchem J. 2019;145:168–72.

    Article  CAS  Google Scholar 

  53. Li H, Wu J, Chen C, Xin W, Zhang W. Simultaneous determination of 74 pesticide residues in Panax notoginseng by QuEChERS coupled with gas chromatography tandem mass spectrometry. Food Sci Hum Wellness. 2021;10(2):241–50.

    Article  Google Scholar 

  54. de Matos Morawski F, Winiarski JP, de Campos CEM, Parize AL, Jost CL. Sensitive simultaneous voltammetric determination of the herbicides diuron and isoproturon at a platinum/chitosan bio-based sensing platform. Ecotoxicol Environ Saf. 2020;206:111181.

    Article  Google Scholar 

  55. Olivieri AC, Goicoechea HC, Iñón FA. MVC1: an integrated MatLab toolbox for first-order multivariate calibration. Chemometr Intell Lab Syst. 2004;73(2):189–97.

    Article  CAS  Google Scholar 

  56. Pourfaraj R, Fatemi SJ, Kazemi SY, Biparva P. Synthesis of hexagonal mesoporous MgAl LDH nanoplatelets adsorbent for the effective adsorption of Brilliant Yellow. J Colloid Interface Sci. 2017;508:65–74.

    Article  CAS  Google Scholar 

  57. Hariani PL, Faizal M, Ridwan R, Marsi M, Setiabudidaya D. Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int J Environ Sci Dev. 2013;4(3):336–40.

    Article  CAS  Google Scholar 

  58. Zhang H, Zou K, Sun H, Duan X. A magnetic organic–inorganic composite: synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides. J Solid State Chem. 2005;178(11):3485–93.

    Article  CAS  Google Scholar 

  59. Nikou M, Samadi-Maybodi A. Application of chemometrics into simultaneous monitoring removal efficiency of two food dyes by an amine-functionalized metal–organic framework. J Iran Chem Soc. 2020;17(7):1671–93. https://doi.org/10.1007/s13738-020-01886-2.

    Article  CAS  Google Scholar 

  60. Nde DB, Boldor D, Astete C. Optimization of microwave assisted extraction parameters of neem (Azadirachta indica A. Juss) oil using the Doehlert’s experimental design. Ind Crops Prod. 2015;65:233–40.

    Article  CAS  Google Scholar 

  61. Tabaraki R, Heidarizadi E. Simultaneous biosorption of Arsenic (III) and Arsenic (V): application of multiple response optimizations. Ecotoxicol Environ Saf. 2018;166:35–41.

    Article  CAS  Google Scholar 

  62. Liu RS, Tang YJ. Tuber melanosporum fermentation medium optimization by plackett–burman design coupled with Draper–Lin small composite design and desirability function. Bioresour Technol. 2010;101(9):3139–46.

    Article  CAS  Google Scholar 

  63. Nekouei F, Nekouei S, Tyagi I, Gupta VK. Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J Mol Liq. 2015;201:124–33.

    Article  CAS  Google Scholar 

  64. Samadi-Maybodi A, Ghezel-Sofla H, BiParva P. Co/Ni/Al-LTH layered Triple Hydroxides with Zeolitic Imidazolate Frameworks (ZIF-8) as high efficient removal of Diazinon from Aqueous Solution. J Inorg Organomet Polym Mater. 2023;33:10–29. https://doi.org/10.1007/s10904-022-02469-9.

    Article  CAS  Google Scholar 

  65. Ahmad R, Kumar R. Adsorption of amaranth dye onto alumina reinforced polystyrene. Clean–Soil Air Water. 2011;39(1):74–82.

    Article  CAS  Google Scholar 

  66. Salem ANM, Ahmed MA, El-Shahat MF. Selective adsorption of amaranth dye on Fe3O4/MgO nanoparticles. J Mol Liq. 2016;219:780–8.

    Article  CAS  Google Scholar 

  67. Johnson RD, Arnold FH. The Temkin isotherm describes heterogeneous protein adsorption. Biochim et Biophys Acta (BBA)-Protein Struct Mol Enzymol. 1995;1247(2):293–7.

    Article  Google Scholar 

  68. Ghaedi M. Comparison of cadmium hydroxide nanowires and silver nanoparticles loaded on activated carbon as new adsorbents for efficient removal of Sunset yellow: kinetics and equilibrium study. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;94:346–51.

    Article  CAS  Google Scholar 

  69. Rao MM, Reddy BR, Jayalakshmi M, Jaya VS, Sridhar B. Hydrothermal synthesis of Mg–Al hydrotalcites by urea hydrolysis. Mater Res Bull. 2005;40(2):347–59.

    Article  CAS  Google Scholar 

  70. Barnabas MJ, Parambadath S, Nagappan S, Ha CS. Sulfamerazine Schiff-base complex intercalated layered double hydroxide: synthesis, characterization, and antimicrobial activity. Heliyon. 2019;5(4): e01521.

    Article  CAS  Google Scholar 

  71. Chinchole AN, Dubey AV, Kumar AV. Bioinspired palladium nanoparticles supported on soil-derived humic acid coated iron-oxide nanoparticles as catalyst for C–C cross-coupling and reduction reactions. Catal Lett. 2019;149(5):1224–36.

    Article  CAS  Google Scholar 

  72. Raghu MS, Kumar KY, Prashanth MK, Prasanna BP, Vinuth R, Kumar CP. Adsorption and antimicrobial studies of chemically bonded magnetic graphene oxide-Fe3O4 nanocomposite for water purification. J Water Process Eng. 2017;17:22–31.

    Article  Google Scholar 

  73. Marangoni R, Bouhent M, Taviot-Guého C, Wypych F, Leroux F. Zn2Al layered double hydroxides intercalated and adsorbed with anionic blue dyes: a physico-chemical characterization. J Colloid Interface Sci. 2009;333(1):120–7.

    Article  CAS  Google Scholar 

  74. Costa FR, Leuteritz A, Wagenknecht U, Jehnichen D, Haeussler L, Heinrich G. Intercalation of Mg–Al layered double hydroxide by anionic surfactants: preparation and characterization. Appl Clay Sci. 2008;38(3–4):153–64.

    Article  CAS  Google Scholar 

  75. Hernandez-Moreno MJ, Ulibarri MA, Rendon JL, Serna CJ. IR characteristics of hydrotalcite-like compounds. Phys Chem Miner. 1985;12(1):34–8. https://doi.org/10.1007/BF00348744.

    Article  CAS  Google Scholar 

  76. Ai L, Zhang C, Meng L. Adsorption of methyl orange from aqueous solution on hydrothermal synthesized Mg–Al layered double hydroxide. J Chem Eng Data. 2011;56(11):4217–25.

    Article  CAS  Google Scholar 

  77. Abdelkader NBH, Bentouami A, Derriche Z, Bettahar N, De Menorval LC. Synthesis and characterization of Mg–Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution. Chem Eng J. 2011;169(1–3):231–8.

    Article  Google Scholar 

  78. Răcuciu M. Synthesis protocol influence on aqueous magnetic fluid properties. Curr Appl Phys. 2009;9(5):1062–6.

    Article  Google Scholar 

  79. Novillo C, Guaya D, Avendaño AAP, Armijos C, Cortina JL, Cota I. Evaluation of phosphate removal capacity of Mg/Al layered double hydroxides from aqueous solutions. Fuel. 2014;138:72–9.

    Article  CAS  Google Scholar 

  80. Samuei S, Fakkar J, Rezvani Z, Shomali A, Habibi B. Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: application as a glucose sensor. Anal Biochem. 2017;521:31–9.

    Article  CAS  Google Scholar 

  81. Theiss FL, Ayoko GA, Frost RL. Thermogravimetric analysis of selected layered double hydroxides. J Therm Anal Calorim. 2013;112(2):649–57.

    Article  CAS  Google Scholar 

  82. Timko M, Kopčanský P, Antalik M, Simsikova M, Valusova E, Molcan M, Kováč J. Physical Properties of Magnetite Nanoparticles Covered by 11-Mercaptoundecanoic Acid. Acta Physica Polonica. 2012;A:121.

    Google Scholar 

  83. Samadi-Maybodi A, Nikou M. Removal of sarafloxacin from aqueous solution by a magnetized metal-organic framework; Artificial neural network modeling. Polyhedron. 2020;179: 114342.

    Article  CAS  Google Scholar 

  84. Cessna AJ, Grover R. Spectrophotometric determination of dissociation constants of selected acidic herbicides. J Agric Food Chem. 1978;26(1):289–92.

    Article  CAS  Google Scholar 

  85. Wang B, Zhang H, Evans DG, Duan X. Surface modification of layered double hydroxides and incorporation of hydrophobic organic compounds. Mater Chem Phys. 2005;92(1):190–6.

    Article  CAS  Google Scholar 

  86. Dehghani M, Nasseri S, Karamimanesh M. Removal of 2, 4-Dichlorophenolyxacetic acid (2, 4-D) herbicide in the aqueous phase using modified granular activated carbon. J Environ Health Sci Eng. 2014;12(1):1–10. https://doi.org/10.1186/2052-336X-12-28.

    Article  CAS  Google Scholar 

  87. Salman JM, Njoku VO, Hameed BH. Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chem Eng J. 2011;174(1):41–8.

    Article  CAS  Google Scholar 

  88. Cengiz S, Cavas L. Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. Cylindracea. Bioresour Technol. 2008;99(7):2357–63.

    Article  CAS  Google Scholar 

  89. SenthilKumar P, Ramalingam S, Sathyaselvabala V, Kirupha SD, Sivanesan S. Removal of copper (II) ions from aqueous solution by adsorption using cashew nut shell. Desalination. 2011;266(1–3):63–71.

    Article  CAS  Google Scholar 

  90. Li Y, Wang JD, Wang XJ, Wang JF. Adsorption–desorption of cd (II) and pb (II) on Ca-montmorillonite. Ind Eng Chem Res. 2012;51(18):6520–8.

    Article  CAS  Google Scholar 

  91. Belhachemi M, Addoun F. Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci. 2011;1(3):111–7.

    Article  CAS  Google Scholar 

  92. Nejati K, Davary S, Saati M. Study of 2, 4-dichlorophenoxyacetic acid (2, 4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution. Appl Surf Sci. 2013;280:67–73.

    Article  CAS  Google Scholar 

  93. Ni ZM, Xia SJ, Wang LG, Xing FF, Pan GX. Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: adsorption property and kinetic studies. J Colloid Interface Sci. 2007;316(2):284–91.

    Article  CAS  Google Scholar 

  94. Zhu MX, Li YP, Xie M, Xin HZ. Sorption of an anionic dye by uncalcined and calcined layered double hydroxides: a case study. J Hazard Mater. 2005;120(1–3):163–71.

    Article  CAS  Google Scholar 

  95. Lv L. Defluoridation of drinking water by calcined MgAl-CO3 layered double hydroxides. Desalination. 2007;208(1–3):125–33.

    Article  CAS  Google Scholar 

  96. Vergili I, Barlas H. Removal of 2,4-D, MCPA and Metalaxyl from water using Lewatit VP OC 1163 as sorbent. Desalination. 2009;249(3):1107–14.

    Article  CAS  Google Scholar 

  97. Cansado IPP, Mourão PAM, Gomes JAFL, Almodôvar V. Adsorption of MCPA, 2, 4-D and diuron onto activated carbons from wood composites. Ciência & Tecnologia dos Materiais. 2017;29(1):e224-228. https://doi.org/10.1016/j.ctmat.2016.07.005.

    Article  Google Scholar 

  98. Kaminski W, Kusmierek K, Swiatkowski A. Sorption equilibrium prediction of competitive adsorption of herbicides 2, 4-D and MCPA from aqueous solution on activated carbon using ANN. Adsorption. 2014;20(7):899–904.

    Article  CAS  Google Scholar 

  99. Bazrafshan E, Kord MF, Faridi H, Farzadkia M, Sargazi S, Sohrabi A. Removal of 2, 4-dichlorophenoxyacetic acid (2, 4-D) from aqueous environments using single-walled carbon nanotubes. 2013. https://doi.org/10.1007/s10450-014-9633-9.

  100. Ding L, Lu X, Deng H, Zhang X. Adsorptive removal of 2, 4-dichlorophenoxyacetic acid (2, 4-D) from aqueous solutions using MIEX resin. Ind Eng Chem Res. 2012;51(34):11226–35.

    Article  CAS  Google Scholar 

  101. Wang L, Cheng C, Tapas S, Lei J, Matsuoka M, Zhang J, Zhang F. Carbon dots modified mesoporous organosilica as an adsorbent for the removal of 2, 4-dichlorophenol and heavy metal ions. J Mater Chem A. 2015;3(25):13357–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of this study. Dr. Abdolraouf Samadi-Maybodi, Mr. Hashem Ghezel-Sofla and Dr. Pourya BiParva performed material preparation, data collection and analysis. Mr. Hashem Ghezel-Sofla wrote the first draft of the manuscript and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Dr. Abdolraouf Samadi-Maybodi is the corresponding author.

Corresponding author

Correspondence to Abdolraouf Samadi-Maybodi.

Ethics declarations

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadi-Maybodi, A., Ghezel-Sofla, H. & BiParva, P. Simultaneous removal of phenoxy herbicides, 2-methyl-4-chlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid from aqueous media by magnetized MgAl-LDH@Fe3O4 composite: application of partial least squares and Doehlert experimental design. J Environ Health Sci Engineer (2023). https://doi.org/10.1007/s40201-023-00877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40201-023-00877-8

Keywords

Navigation