Skip to main content
Log in

Synthesis of novel adsorbent by incorporation of plant extracts in amino-functionalized silica-coated magnetic nanomaterial for the removal of Zn2+and Cu2+from aqueous solution

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles owing to their superparamagnetic behaviour and specific reactive sites are facilitated to regenerate and reuse. Our present study determines the cointegration of the plant extracts of Cynodon dactylon and Muraya koenigii with the magnetic nanoparticle coated with silica layer and surface engineered with a specific amine group. The cointegrated magnetic nano adsorbent is characterized for its analytical feature and batch studies are performed to remove zinc (Zn2+) copper (Cu2+) metal ions. Fourier transform infrared spectroscopy reveals the presence of functional entities such as NH2, Si-O-Si, C=C. The size of the cointegrated nano adsorbent (12–30 nm) was confirmed by field emission scanning electron microscopy whereas, a high-resolution transmission electron microscope affirms the nanosize of the particle constituted around 20 nm. Energy dispersive x-ray analysis confirms the presence of elements like Fe, N, Si and was confirmed by X-ray diffraction analysis and vibrating sample magnetometer affirms the superparamagnetic nature with the high magnetic saturation value (Ms – 30 emug−1). The cointegrated nano adsorbent reveals the maximum adsorption capacity of Zn2+ as 78.24 mg.g−1 and Cu2+ as 81.76 mg.g−1 of the adsorbent under the optimized conditions of contact time 45 min, pH 6.0 and temperature 35 °C. Kinetics such as pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion and isotherm studies like Langmuir, Freundlich, Dubinin-Radushkevich and Temkin were performed to understand the mechanism of interaction between the nanoadsorbent and metal ions. The reaction system follows the pseudo-second-order kinetics and Langmuir isotherm model for both the Cu2+ and Zn2+ metal ions. To determine the reusing capacity of the cointegrated nanoadsorbent, the adsorption efficiency was studied for continuous twelve cycles with 80% recovery after subsequent acid treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yousef A, Rauf F, Hossein E. Cr (VI) removal from aqueous solution using activated carbon prepared from Ziziphus spina-christi leaf. Materials Research Express. 2019;6:045607. https://doi.org/10.1088/2053-1591/aafb45.

    Article  CAS  Google Scholar 

  2. Shafiee M, Foroutan R, Fouladi K, Ahmadlouydarab M, Ramavandi B, Sahebi S. Application of oak powder/Fe3O4 magnetic composite in toxic metals removal from aqueous solutions. Adv Powder Technol. 2018;30:544–54. https://doi.org/10.1016/j.apt.2018.12.006.

    Article  CAS  Google Scholar 

  3. Maheshwari U, Mathesan B, Gupta S. Efficient adsorbent for simultaneous removal of cu(II), Zn(II) and Cr(VI): kinetic, thermodynamics and mass transfer mechanism. Process Saf Environ Prot. 2015;98:198–210. https://doi.org/10.1016/j.psep.2015.07.010.

    Article  CAS  Google Scholar 

  4. Ahmadi A, Foroutan R, Esmaeili H, Tamjidi S. The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media. Environ Sci Pollut Res. 2020;27:14044–57.

    Article  CAS  Google Scholar 

  5. Ali N, Khan S, Li Y, Zheng N, Yao H. Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils. Sci Total Environ. 2019;647:551–60. https://doi.org/10.1016/j.scitotenv.2018.07.425.

    Article  CAS  Google Scholar 

  6. Foroutan R, Mohammadi R, Adeleye AS, Farjadfard S, Esvandi Z, Arfaeinia H, et al. Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents. Environ Sci Pollut Res. 2019;26:29748–62. https://doi.org/10.1007/s11356-019-06070-5.

    Article  CAS  Google Scholar 

  7. Weng X, Wu J, Ma L, Owens G, Chen Z. Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chem Eng J. 2019;359:976–81. https://doi.org/10.1016/j.cej.2018.11.089.

    Article  CAS  Google Scholar 

  8. Foroutan R, Mohammadi R, Sohrabi N, Sahebi S, Farjadfard S, Esvandi Z, et al. Calcined alluvium of agricultural streams as a recyclable and cleaning tool for cationic dye removal from aqueous media. Environ Technol Innov. 2020:17. https://doi.org/10.1016/j.eti.2019.100530.

  9. Esvandi Z, Foroutan R, Mirjalili M, Sorial GA, Ramavandi B. Physicochemical behavior of Penaeuse semisulcatuse chitin for Pb eggand cd removal from aqueous environment. J Polym Environ. 2019;27:263–74. https://doi.org/10.1007/s10924-018-1345-x.

    Article  CAS  Google Scholar 

  10. Foroutan R, Peighambardoust SJ, Mohammadi R, Omidvar M, Sorial GA, Ramavandi B. Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: adaptive neuro-fuzzy inference modeling. Int J Biol Macromol. 2020;151:355–65. https://doi.org/10.1016/j.ijbiomac.2020.02.202.

    Article  CAS  Google Scholar 

  11. Foroutan R, Mohammadi R, Ramavandi B. Elimination performance of methylene blue, methyl violet, and Nile blue from aqueous media using AC/CoFe2O4 as a recyclable magnetic composite. Environ Sci Pollut Res. Environmental Science and Pollution Research. 2019;26:19523–39. https://doi.org/10.1007/s11356-019-05282-z.

    Article  CAS  Google Scholar 

  12. Foroutan R, Zareipour MR. Fast adsorption of chromium (VI) ions from synthetic sewage using bentonite and bentonite/bio-coal composite: a comparative study. Mater.Res.Express. 2018;6:025508. https://doi.org/10.1088/2053-1591/aaebb9.

    Article  CAS  Google Scholar 

  13. Bonyadi Z, Kumar PS, Foroutan R, Kafaei R, Arfaeinia H, Farjadfard S, et al. Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: application for real wastewater. Korean J Chem Eng. 2019;36:1595–603. https://doi.org/10.1007/s11814-019-0373-0.

    Article  CAS  Google Scholar 

  14. Deng YH, Wang CC, Hu JH, Yang WL, Fu SK. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloids Surfaces A Physicochem Eng Asp. 2005;262:87–93. https://doi.org/10.1016/j.colsurfa.2005.04.009.

    Article  CAS  Google Scholar 

  15. Sahu N, Soni D, Chandrashekhar B, Sarangi BK, Satpute D, Pandey RA. Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity. Bioprocess Biosyst Eng. 2013;36:999–1004. https://doi.org/10.1007/s00449-012-0841-y.

    Article  CAS  Google Scholar 

  16. Gupta D, Kumar M, Gupta V. An in vitro investigation of antimicrobial efficacy of Euphorbia hirta and Murraya koenigii against selected pathogenic microorganisms. Asian J Pharm Clin Res. 2018;11:359–63. https://doi.org/10.22159/ajpcr.2018.v11i5.24578.

    Article  CAS  Google Scholar 

  17. Huang G, Yang C, Zhang K, Shi J. Adsorptive removal of copper ions from aqueous solution using cross-linked magnetic chitosan beads. Chinese J Chem Eng. 2009;17:960–6. https://doi.org/10.1016/S1004-9541(08)60303-1.

    Article  CAS  Google Scholar 

  18. Vishnu D, Dhandapani B. Integration of Cynodon dactylon and Muraya koenigii plant extracts in amino-functionalised silica-coated magnetic nanoparticle as an effective sorbent for the removal of chromium(VI) metal pollutants. IET Nanobiotechnology. 2020;14:449–56. https://doi.org/10.1049/iet-nbt.2019.0313.

    Article  Google Scholar 

  19. Kumar VV, Sivanesan S, Cabana H. Magnetic cross-linked laccase aggregates - bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci Total Environ. 2014;487:830–9. https://doi.org/10.1016/j.scitotenv.2014.04.009.

    Article  CAS  Google Scholar 

  20. Reza RT, Perez CAM, Gonzalez CAR, Romero HM, Casillas PEG. Effect of the polymeric coating over Fe3O4 particles used for magnetic separation. Cent Eur J Chem. 2010;8:1041–6. https://doi.org/10.2478/s11532-010-0073-4.

    Article  CAS  Google Scholar 

  21. Vishnu D, Dhandapani B, Ramakrishnan SR, Pandian PK, Raguraman T. Fabrication of surface-engineered superparamagnetic nanocomposites (co/Fe/Mn) with biochar from groundnut waste residues for the elimination of copper and lead metal ions. J Nanostructure. 2020;20:215–28. https://doi.org/10.1007/s40097-020-00360-y.

    Article  CAS  Google Scholar 

  22. Mohammadi P, Sheibani H. Green synthesis of Fe3O4@SiO2-ag magnetic nanocatalyst using safflower extract and its application as recoverable catalyst for reduction of dye pollutants in water. Appl Organomet Chem. 2018;32. https://doi.org/10.1002/aoc.4249.

  23. Vishnu D, Dhandapani BKS. The symbiotic effect of integrated Muraya koenigii extract and surface-modified magnetic microspheres–a green biosorbent for the removal of Cu(II) and Cr(VI) ions from aqueous solutions. Chem Eng Commun. 2021;2019:6445. https://doi.org/10.1080/00986445.2019.1691538.

    Article  CAS  Google Scholar 

  24. Chen Y, Song YF. Highly selective and efficient removal of Cr(VI) and cu(II) by the chromotropic acid-intercalated Zn-Al layered double hydroxides. Ind Eng Chem Res. 2013;52:4436–42. https://doi.org/10.1021/ie400108t.

    Article  CAS  Google Scholar 

  25. Gnanasekaran R, Dhandapani B, Saravanan A. Biosorption of methylene blue dye by chemically modified aspergillus japonicus mg183814: kinetics, thermodynamic and equilibrium studies. Desalin Water Treat. 2018;122:132–45.

    Article  CAS  Google Scholar 

  26. Kumar R, Barakat MA, Daza YA, Woodcock HL, Kuhn JN. EDTA functionalized silica for removal of cu(II), Zn(II) and Ni(II) from aqueous solution. J Colloid Interface Sci. 2013;408:200–5. https://doi.org/10.1016/j.jcis.2013.07.019.

    Article  CAS  Google Scholar 

  27. Huang D, Liu C, Zhang C, Deng R, Wang R, Xue W, et al. Cr(VI) removal from aqueous solution using biochar modified with mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid. Bioresour Technol. 2019;276:127–32. https://doi.org/10.1016/j.biortech.2018.12.114.

    Article  CAS  Google Scholar 

  28. Boparai HK, Joseph M, O’Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 2011;186:458–65. https://doi.org/10.1016/j.jhazmat.2010.11.029.

    Article  CAS  Google Scholar 

  29. Vishnu D, Neeraj G, Swaroopini R, Shobana R, Kumar VV, Cabana H. Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ Sci Pollut Res. 2017;24:17993–8009. https://doi.org/10.1007/s11356-017-9318-5.

    Article  CAS  Google Scholar 

  30. Bao S, Tang L, Li K, Ning P, Peng J, Guo H, et al. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent. J Colloid Interface Sci. 2016;462:235–42. https://doi.org/10.1016/j.jcis.2015.10.011.

    Article  CAS  Google Scholar 

  31. Hojati S, Landi A. Kinetics and thermodynamics of zinc removal from a metal-plating wastewater by adsorption onto an Iranian sepiolite. Int J Environ Sci Technol. 2015;12:203–10. https://doi.org/10.1007/s13762-014-0672-2.

  32. Philip D, Unni C, Aromal SA, Vidhu VK. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2011;78:899–904. https://doi.org/10.1016/j.saa.2010.12.060.

    Article  CAS  Google Scholar 

  33. Foroutan R, Mohammadi R, Razeghi J, Ramavandi B. Performance of algal activated carbon/Fe3O4 magnetic composite for cationic dyes removal from aqueous solutions. Algal Res. 2019;40:101509. https://doi.org/10.1016/j.algal.2019.101509.

    Article  Google Scholar 

  34. Foroutan R, Mohammadi R, Ramavandi B, Bastanian M. Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon. Korean J Chem Eng. 2018;35:2207–19. https://doi.org/10.1007/s11814-018-0145-2.

    Article  CAS  Google Scholar 

  35. Hao YM, Man C, Hu ZB. Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J Hazard Mater. 2010;184:392–9. https://doi.org/10.1016/j.jhazmat.2010.08.048.

    Article  CAS  Google Scholar 

  36. Alhumaimess MS, Alsohaimi IH, Alqadami AA, Khan MA, Kamel MM, Aldosari O, et al. Recyclable glutaraldehyde cross-linked polymeric tannin to sequester hexavalent uranium from aqueous solution. J Mol Liq. 2019;281:29–38. https://doi.org/10.1016/j.molliq.2019.02.040.

    Article  CAS  Google Scholar 

  37. Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. J Pharm Biomed Anal. 2014;87:218–28. https://doi.org/10.1016/j.jpba.2013.03.007.

    Article  CAS  Google Scholar 

  38. Chavez-Guajardo AE, Medina-Llamas JC, Maqueira L, Andrade CAS, Alves KGB, de Melo CP. Efficient removal of Cr (VI) and cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J. 2015;281:826–36. https://doi.org/10.1016/j.cej.2015.07.008.

    Article  CAS  Google Scholar 

  39. Hachoumi I, Tatár E, Mihucz VG, Orgován G, Záray G, El Antri S, et al. Pod razor (Ensis siliqua) shell powder as cost-effective biomineral for removal of nickel(II), copper(II) and zinc(II) from artificially contaminated industrial wastewater. Sustain Chem Pharm. 2019;12:100137. https://doi.org/10.1016/j.scp.2019.100137.

    Article  Google Scholar 

  40. Wu Y, Jiang Y, Li Y, Wang R. Optimum synthesis of an amino functionalized microcrystalline cellulose from corn stalk for removal of aqueous Cu2+. Cellulose. 2019;26:805–21. https://doi.org/10.1007/s10570-018-2113-8.

    Article  CAS  Google Scholar 

  41. Naeimi B, Foroutan R, Ahmadi B, Sadeghzadeh F, Ramavandi B. Pb(II) and cd(II) removal from aqueous solution, shipyard wastewater, and landfill leachate by modified Rhizopus oryzae biomass. Mater Res Express. 2018;5. https://doi.org/10.1088/2053-1591/aab81b/meta.

  42. Foroutan R, Ahmadlouydarab M, Ramavandi B, Mohammadi R. Studying the physicochemical characteristics and metals adsorptive behavior of CMC-g-HAp/Fe3O4 nanobiocomposite. J Environ Chem Eng. 2018;6:6049–58. https://doi.org/10.1016/j.jece.2018.09.030.

    Article  CAS  Google Scholar 

  43. Foroutan R, Mohammadi R, Farjadfard S, Esmaeili H, Ramavandi B, Sorial GA. Eggshell nano-particle potential for methyl violet and mercury ion removal: surface study and field application. Adv Powder Technol. 2019;30:2188–99. https://doi.org/10.1016/j.apt.2019.06.034.

    Article  CAS  Google Scholar 

  44. Sarma GK, Sen Gupta S, Bhattacharyya KG. Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ Sci Pollut Res. 2019;26:6245–78. https://doi.org/10.1007/s11356-018-04093-y.

  45. Foroutan R, Mohammadi R, Farjadfard S, Esmaeili H, Saberi M, Sahebi S, et al. Characteristics and performance of cd, Ni, and Pb bio-adsorption using Callinectes sapidus biomass: real wastewater treatment. Environ Sci Pollut Res Environmental Science and Pollution Research. 2019;26:6336–47. https://doi.org/10.1007/s11356-018-04108-8.

    Article  CAS  Google Scholar 

  46. Foroutan R, Khoo FS, Ramavandi B, Abbasi S. Heavy metals removal from synthetic and shipyard wastewater using phoenix dactylifera activated carbon. Desalin Water Treat. 2017;82:146–56. https://doi.org/10.5004/dwt.2017.20908.

    Article  CAS  Google Scholar 

  47. Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, et al. Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chem Eng J. 2014;241:175–83. https://doi.org/10.1016/j.cej.2013.12.051.

    Article  CAS  Google Scholar 

  48. Hu C, Zhu P, Cai M, Hu H, Fu Q. Comparative adsorption of Pb(II), cu(II) and cd(II) on chitosan saturated montmorillonite: kinetic, thermodynamic and equilibrium studies. Appl Clay Sci. 2017;143:320–6. https://doi.org/10.1016/j.clay.2017.04.005.

    Article  CAS  Google Scholar 

  49. Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci. 2010;349:293–9. https://doi.org/10.1016/j.jcis.2010.05.010.

    Article  CAS  Google Scholar 

  50. Ji J, Chen G, Zhao J. Preparation and characterization of amino/thiol bifunctionalized magnetic nanoadsorbent and its application in rapid removal of Pb (II) from aqueous system. J Hazard Mater. 2019;368:255–63. https://doi.org/10.1016/j.jhazmat.2019.01.03552.

    Article  CAS  Google Scholar 

  51. Ge F, Li MM, Ye H, Zhao BX. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater. 2012;211–212:366–72. https://doi.org/10.1016/j.jhazmat.2011.12.013.

    Article  CAS  Google Scholar 

  52. Sargin I, Arslan G, Kaya M. Production of magnetic chitinous microcages from ephippia of zooplankton Daphnia longispina and heavy metal removal studies. Carbohydr Polym. 2019;207:200–10. https://doi.org/10.1016/j.carbpol.2018.11.072.

    Article  CAS  Google Scholar 

  53. Foroutan R, Esmaeili H, Rishehri SD, Sadeghzadeh F, Mirahmadi S, Kosarifard M, et al. Zinc, nickel, and cobalt ions removal from aqueous solution and plating plant wastewater by modified Aspergillus flavus biomass: A dataset. Data Br. 2017;12:485–92. https://doi.org/10.1016/j.dib.2017.04.031.

    Article  Google Scholar 

  54. Abbasi S, Foroutan R, Esmaeili H, Esmaeilzadeh F. Preparation of activated carbon from worn tires for removal of cu(II), Ni(II) and co(II) ions from synthetic wastewater. Desalin Water Treat. 2019;141:269–78. https://doi.org/10.5004/dwt.2019.23569.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to SSN Trust, India for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Author 1: DV contribution were detailed literature survey, data collection and drafted the article.

Author 2: BD is the author who designed the research work, interprets the data and help in manuscript preparation.

Corresponding author

Correspondence to Balaji Dhandapani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnu, D., Dhandapani, B. Synthesis of novel adsorbent by incorporation of plant extracts in amino-functionalized silica-coated magnetic nanomaterial for the removal of Zn2+and Cu2+from aqueous solution. J Environ Health Sci Engineer 19, 1413–1424 (2021). https://doi.org/10.1007/s40201-021-00696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00696-9

Keywords

Navigation