Skip to main content
Log in

Characteristics and performance of Cd, Ni, and Pb bio-adsorption using Callinectes sapidus biomass: real wastewater treatment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the current study, the bio-adsorption potential of Callinectes sapidus biomass for control of cadmium, nickel, and lead from the aqueous stream was assessed. Spectrum analysis of FTIR, AFM, EDAX, mapping, SEM, TEM, and XRF was used to study the properties of the C. sapidus biomass. The XRF analysis revealed that C. sapidus bio-adsorbent has various effective metal oxides that can be useful to adsorb pollutants. The best model to describe the equilibrium data was Freundlich isotherm. The Langmuir bio-adsorption capacity was reported at 31.44 mg g−1, 29.23 mg g−1, and 29.15 mg g−1 for lead, cadmium, and nickel ions, respectively. Pseudo-first-order and pseudo-second-order kinetic models were studied to test the kinetic behavior of the process. An intra-particle diffusion model was used to determine the effective mechanisms involved in the bio-adsorption. Based on t1/2, it can be concluded that the equilibrium speed of the bio-adsorption process is high. The thermodynamic study showed that the metal bio-adsorption process using C. sapidus biomass is exothermic and spontaneous. The field applicability of the crab bio-adsorbent for eliminating concurrently several contaminants (metal ions, antibiotics, sulfate, nitrate, and ammonium) from an actual wastewater was successfully examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad M, Usman AR, Lee SS, Kim S-C, Joo J-H, Yang JE, Ok YS (2012) Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. J Ind Eng Chem 18(1):198–204

    Article  CAS  Google Scholar 

  • Ahmadi M, Kouhgardi E, Ramavandi B (2016) Physico-chemical study of dew melon peel biochar for chromium attenuation from simulated and actual wastewaters. Korean J Chem Eng 33(9):2589–2601. https://doi.org/10.1007/s11814-016-0135-1

    Article  CAS  Google Scholar 

  • Ahmadi M, Foladivanda M, Jaafarzadeh N, Ramezani Z, Ramavandi B, Jorfi S, Kakavandi B (2017) Synthesis of chitosan zero-valent iron nanoparticles-supported for cadmium removal: characterization, optimization and modeling approach. J Water Supply Res T 66:116–130

    Article  Google Scholar 

  • Amarasinghe B, Williams R (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132(1–3):299–309

    Article  CAS  Google Scholar 

  • Anayurt RA, Sari A, Tuzen M (2009) Equilibrium, thermodynamic and kinetic studies on biosorption of Pb (II) and Cd (II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chem Eng J 151(1–3):255–261

    Article  CAS  Google Scholar 

  • Arim AL, Guzzo G, Quina MJ, Gando-Ferreira LM (2018) Single and binary sorption of Cr(III) and Ni(II) onto modified pine bark. Environ Sci Pollut Res 25(28):28039–28049. https://doi.org/10.1007/s11356-018-2843-z

    Article  CAS  Google Scholar 

  • Baron RD, Pérez LL, Salcedo JM, Córdoba LP, do Amaral Sobral PJ (2017) Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from orange (Citrus sinensis Osbeck) peel. Int J Biol Macromol 98:676–683

    Article  CAS  Google Scholar 

  • Barros AJM, Prasad S, Leite VD, Souza AG (2007) Biosorption of heavy metals in upflow sludge columns. Bioresour Technol 98(7):1418–1425

    Article  CAS  Google Scholar 

  • Birungi Z, Chirwa E (2015) The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. J Hazard Mater 299:67–77

    Article  CAS  Google Scholar 

  • Castillo-Araiza CO, Che-Galicia G, Dutta A, Guzmán-González G, Martínez-Vera C, Ruíz-Martínez RS (2015) Effect of diffusion on the conceptual design of a fixed-bed adsorber. Fuel 149:100–108. https://doi.org/10.1016/j.fuel.2014.09.023

    Article  CAS  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater, 20th edn. APHA American Public Health Association, Washington, D.C.

    Google Scholar 

  • de Sousa DNR, Insa S, Mozeto AA, Petrovic M, Chaves TF, Fadini PS (2018) Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 205:137–146

    Article  CAS  Google Scholar 

  • Fawzy M, Nasr M, Adel S, Nagy H, Helmi S (2016) Environmental approach and artificial intelligence for Ni(II) and Cd(II) biosorption from aqueous solution using Typha domingensis biomass. Ecol Eng 95:743–752

    Article  Google Scholar 

  • Foroutan R, Esmaeili H, Abbasi M, Rezakazemi M, Mesbah M (2017a) Adsorption behavior of Cu (II) and Co (II) using chemically modified marine algae. Environ Technol:1–9 In press

  • Foroutan R, Esmaeili H, Rishehri SD, Sadeghzadeh F, Mirahmadi S, Kosarifard M, Ramavandi B (2017b) Zinc, nickel, and cobalt ions removal from aqueous solution and plating plant wastewater by modified Aspergillus flavus biomass: a dataset. Data Brief 12:485–492

    Article  Google Scholar 

  • Foroutan R, Mohammadi R, Ramavandi B (2018) Treatment of chromium-laden aqueous solution using CaCl2-modified Sargassum oligocystum biomass: characteristics, equilibrium, kinetic, and thermodynamic studies. Korean J Chem Eng 35(1):234–245

    Article  CAS  Google Scholar 

  • Franus M, Bandura L (2014) Sorption of heavy metal ions from aqueous solution by glauconite. Fresenius Environ Bull 23(3a):825–839

    CAS  Google Scholar 

  • Gogoi D, Shanmugamani A, Rao S, Kumar T, Sinha P (2013) Studies on removal of cobalt from an alkaline waste using synthetic calcium hydroxyapatite. J Radioanal Nucl Chem 298(1):337–344

    Article  CAS  Google Scholar 

  • Gruszecka-Kosowska A, Baran P, Wdowin M, Franus W (2017) Waste dolomite powder as an adsorbent of Cd, Pb (II), and Zn from aqueous solutions. Environ Earth Sci 76(15):521

    Article  CAS  Google Scholar 

  • Kafaei R, Papari F, Seyedabadi M, Sahebi S, Tahmasebi R, Ahmadi M, Sorial GA, Asgari G, Ramavandi B (2018) Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. Sci Total Environ 627:703–712

    Article  CAS  Google Scholar 

  • Kalhori EM, Yetilmezsoy K, Uygur N, Zarrabi M, Shmeis RMA (2013) Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Appl Surf Sci 287:428–442

    Article  CAS  Google Scholar 

  • Kamble SP, Jagtap S, Labhsetwar NK, Thakare D, Godfrey S, Devotta S, Rayalu SS (2007) Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan. Chem Eng J 129(1–3):173–180

    Article  CAS  Google Scholar 

  • Karthikeyan S, Balasubramanian R, Iyer C (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu (II) from aqueous solutions. Bioresour Technol 98(2):452–455

    Article  CAS  Google Scholar 

  • Kyzioł-Komosińska J, Rosik-Dulewska C, Franus M, Antoszczyszyn-Szpicka P, Czupiol J, Krzyzewska I (2015) Sorption capacities of natural and synthetic zeolites for Cu (II) ions. Pol J Environ Stud 24(3):1111–1123

    Article  CAS  Google Scholar 

  • Li D, Zhou L (2018) Adsorption of heavy metal tolerance strains to Pb2+ and Cd2+ in wastewater. Environ Sci Pollut Res 25:32156–32162. https://doi.org/10.1007/s11356-018-2988-9

    Article  CAS  Google Scholar 

  • Long J, Gao X, Su M, Li H, Chen D, Zhou S (2018) Performance and mechanism of biosorption of nickel(II) from aqueous solution by non-living Streptomyces roseorubens SY. Colloids Surf A Physicochem Eng Asp 548:125–133. https://doi.org/10.1016/j.colsurfa.2018.03.040

    Article  CAS  Google Scholar 

  • Mahmoud ME, Hassan SS, Kamel AH, Elserw MI (2018) Fast microwave-assisted sorption of heavy metals on the surface of nanosilica-functionalized-glycine and reduced glutathione. Bioresour Technol 264:228–237

    Article  CAS  Google Scholar 

  • Masoumi A, Hemmati K, Ghaemy M (2016) Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb (II) and crystal violet from water. Chemosphere 146:253–262

    Article  CAS  Google Scholar 

  • Milonjić SK (2007) A consideration of the correct calculation of thermodynamic parameters of adsorption. J Serb Chem Soc 72(12):1363–1367

    Article  CAS  Google Scholar 

  • Mohan D, Singh KP (2002) Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res 36(9):2304–2318

    Article  CAS  Google Scholar 

  • Naeimi B, Foroutan R, Ahmadi B, Sadeghzadeh F, Ramavandi B (2018) Pb (II) and Cd (II) removal from aqueous solution, shipyard wastewater, and landfill leachate by modified Rhizopus oryzae biomass. Mater Res Exp 5(4):045501

    Article  CAS  Google Scholar 

  • Nagy B, Szilagyi B, Majdik C, Katona G, Indolean C, Măicăneanu A (2014) Cd (II) and Zn (II) biosorption on Lactarius piperatus macrofungus: equilibrium isotherm and kinetic studies. Environ Prog Sustain Energy 33(4):1158–1170. https://doi.org/10.1002/ep.11897

    Article  CAS  Google Scholar 

  • Pehlivan E, Altun T, Parlayici Ş (2012) Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chem 135(4):2229–2234

    Article  CAS  Google Scholar 

  • Peng W, Li H, Liu Y, Song S (2016) Adsorption of methylene blue on graphene oxide prepared from amorphous graphite: effects of pH and foreign ions. J Mol Liq 221:82–87

    Article  CAS  Google Scholar 

  • Petrella A, Spasiano D, Acquafredda P, De Vietro N, Ranieri E, Cosma P, Rizzi V, Petruzzelli V, Petruzzelli D (2018) Heavy metals retention (Pb(II), Cd(II), Ni(II)) from single and multimetal solutions by natural biosorbents from the olive oil milling operations. Process Saf Environ Prot 114:79–90. https://doi.org/10.1016/j.psep.2017.12.010

    Article  CAS  Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2009) Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J Hazard Mater 170(2–3):969–977

    Article  CAS  Google Scholar 

  • Saber M, Takahashi F, Yoshikawa K (2018) Characterization and application of microalgae hydrochar as a low-cost adsorbent for Cu(II) ion removal from aqueous solutions. Environ Sci Pollut Res 25:32721–32734. https://doi.org/10.1007/s11356-018-3106-8

    Article  CAS  Google Scholar 

  • Safari M, Ramavandi B, Sanati AM, Sorial GA, Hashemi S, Tahmasebi S (2018) Potential of trees leaf/bark to control atmospheric metals in a gas and petrochemical zone. J Environ Manag 222:12–20

    Article  CAS  Google Scholar 

  • Salem A, Velayi E (2012) Application of hydroxyapatite and cement kiln dust mixture in adsorption of lead ions from aqueous solution. J Ind Eng Chem 18(4):1216–1222

    Article  CAS  Google Scholar 

  • Sarı A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb (II) and Cd (II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164(2–3):1004–1011

    Article  CAS  Google Scholar 

  • Sari A, Mendil D, Tuzen M, Soylak M (2008) Biosorption of Cd (II) and Cr (III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chem Eng J 144(1):1–9

    Article  CAS  Google Scholar 

  • Teimouri A, Esmaeili H, Foroutan R, Ramavandi B (2017) Adsorptive performance of calcined Cardita bicolor for attenuating Hg (II) and As (III) from synthetic and real wastewaters. Korean J Chem Eng 35(2):479–488

    Article  CAS  Google Scholar 

  • Tran NH, Chen H, Reinhard M, Mao F, Gin KY-H (2016) Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res 104:461–472

    Article  CAS  Google Scholar 

  • Venkateswarlu S, Kumar SH, Jyothi N (2015) Rapid removal of Ni (II) from aqueous solution using 3-mercaptopropionic acid functionalized bio magnetite nanoparticles. Water Res Ind 12:1–7

    Article  Google Scholar 

  • Watkinson A, Murby E, Costanzo S (2007) Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res 41(18):4164–4176

    Article  CAS  Google Scholar 

  • Yadav SK, Singh DK, Sinha S (2014) Chemical carbonization of papaya seed originated charcoals for sorption of Pb (II) from aqueous solution. J Environ Chem Eng 2(1):9–19

    Article  CAS  Google Scholar 

  • Zheng J-C, Liu H-Q, Feng H-M, Li W-W, Lam MH-W, Lam PK-S, Yu H-Q (2016) Competitive sorption of heavy metals by water hyacinth roots. Environ Pollut 219:837–845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of Tabriz for financial support (grant no. Tab-132-96) and Bushehr University of Medical Sciences for technical support to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soleyman Sahebi or Bahman Ramavandi.

Ethics declarations

Declarations of interest

None.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroutan, R., Mohammadi, R., Farjadfard, S. et al. Characteristics and performance of Cd, Ni, and Pb bio-adsorption using Callinectes sapidus biomass: real wastewater treatment. Environ Sci Pollut Res 26, 6336–6347 (2019). https://doi.org/10.1007/s11356-018-04108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-04108-8

Keywords

Navigation