Skip to main content
Log in

Advanced oxidation processes for chlorpyrifos removal from aqueous solution: a systematic review

  • Review article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Chlorpyrifos (CPF), an organophosphate insecticide, due to its high efficiency and low cost is widely used in the agricultural industry. CPF may lead to lung deficiency, central nervous system damage, developmental and autoimmune disorders. In recent decades, the advanced oxidation processes (AOPs) have been considered in water and wastewater treatment due to their high efficiency in decomposition of organic and inorganic compounds, specially hardly biodegradable or non-biodegradable compounds. In the present review study, the most common AOPs (such as Fenton and Photo-Fenton processes, UV/H2O2 photolysis, UV/TiO2 heterogeneous photo catalysis, electrochemical processes, sonolysis technology, gamma irradiation technology and sulfate-based AOPs) applied for CPF removal from aqueous matrices has been investigated. It can be concluded that the use of AOPs are effective for CPF removal from aqueous media. In addition, Fenton and photocatalytic processes appear to be the most common techniques for CPF degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khedr T, Hammad AA, Elmarsafy AM, Halawa E, Soliman M. Degradation of some organophosphorus pesticides in aqueous solution by gamma irradiation. J Hazard Mater. 2019;373:23–8. https://doi.org/10.1016/j.jhazmat.2019.03.011.

    Article  CAS  Google Scholar 

  2. Ismail M, Khan HM, Sayed M, Cooper WJ. Advanced oxidation for the treatment of chlorpyrifos in aqueous solution. Chemosphere. 2013;93:645–51. https://doi.org/10.1016/j.chemosphere.2013.06.051.

    Article  CAS  Google Scholar 

  3. Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR. Effects of pesticides on environment. Plant Soil Microbes. 2016:253–69.

  4. Uniyal S, Sharma RK. Technological advancement in electrochemical biosensor based detection of organophosphate pesticide chlorpyrifos in the environment: a review of status and prospects. Biosens Bioelectron. 2018;116:37–50.

    Article  CAS  Google Scholar 

  5. Katsikantami I, Colosio C, Alegakis A, Tzatzarakis MN, Vakonaki E, Rizos AK, et al. Estimation of daily intake and risk assessment of organophosphorus pesticides based on biomonitoring data–the internal exposure approach. Food Chem Toxicol. 2019;123:57–71. https://doi.org/10.1016/j.fct.2018.10.047.

    Article  CAS  Google Scholar 

  6. Amalraj A, Pius A. Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation. J Water Process Eng. 2015;7:94–101.

    Article  Google Scholar 

  7. Bakırcı GT, Acay DBY, Bakırcı F, Ötleş S. Pesticide residues in fruits and vegetables from the Aegean region. Turkey Food Chem. 2014;160:379–92. https://doi.org/10.1016/j.foodchem.2014.02.051.

    Article  CAS  Google Scholar 

  8. Thind PS, Kumari D, John S. TiO2/H2O2 mediated UV photocatalysis of Chlorpyrifos: optimization of process parameters using response surface methodology. J. Environ. Chem. Eng. 2018;6:3602–9. https://doi.org/10.1016/j.jece.2017.05.031.

    Article  CAS  Google Scholar 

  9. Ren Q, Yin C, Chen Z, Cheng M, Ren Y, Xie X, et al. Efficient sonoelectrochemical decomposition of chlorpyrifos in aqueous solution. Microchem J. 2019;145:146–53. https://doi.org/10.1016/j.microc.2018.10.032.

    Article  CAS  Google Scholar 

  10. Liu H, Chen J, Wu N, Xu X, Qi Y, Jiang L, et al. Oxidative degradation of chlorpyrifos using ferrate (VI): kinetics and reaction mechanism. Ecotoxicol Environ Saf. 2019;170:259–66.

    Article  CAS  Google Scholar 

  11. Gvozdenac S, Inđić D, Vuković S. Phytotoxicity of chlorpyrifos to white mustard (Sinapis alba L.) and maize (Zea mays L.): Potential indicators of insecticide presence in water. Pestic fitomed. 2013. https://doi.org/10.2298/PIF1304265G.

  12. Deb N, Das S. Chlorpyrifos toxicity in fish: a review. Curr World Environ. 2013. https://doi.org/10.12944/CWE.8.1.17.

  13. Moradeeya PG, Kumar MA, Thorat RB, Rathod M, Khambhaty Y, Basha S. Nanocellulose for biosorption of chlorpyrifos from water: chemometric optimization, kinetics and equilibrium. Cellulose. 2017;24:1319–32. https://doi.org/10.1007/s10570-017-1197-x.

    Article  CAS  Google Scholar 

  14. Zhang Y, Hou Y, Chen F, Xiao Z, Zhang J, Hu X. The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: effect of parameters and degradation pathway. Chemosphere. 2011;82:1109–15. https://doi.org/10.1016/j.chemosphere.2010.11.081.

    Article  CAS  Google Scholar 

  15. Qurie M, Khamis M, Ayyad I, Scrano L, Lelario F, Bufo SA, et al. Removal of chlorpyrifos using micelle–clay complex and advanced treatment technology. Desalination Water Treat. 2016;57:15687–96. https://doi.org/10.1080/19443994.2015.1096836.

    Article  CAS  Google Scholar 

  16. Bonifacio AF, Ballesteros ML, Bonansea RI, Filippi I, Amé MV, Hued AC. Environmental relevant concentrations of a chlorpyrifos commercial formulation affect two neotropical fish species, Cheirodon interruptus and Cnesterodon decemmaculatus. Chemosphere. 2017;188:486–93. https://doi.org/10.1016/j.chemosphere.2017.08.156.

    Article  CAS  Google Scholar 

  17. Antonious GF, Turley ET, Abubakari M, Snyder JC. Dissipation, half-lives, and mass spectrometric identification of chlorpyrifos and its two metabolites on field-grown collard and kale. J Environ Sci Health B. 2017;52:251–5. https://doi.org/10.1080/03601234.2016.1270683.

    Article  CAS  Google Scholar 

  18. John EM, Shaike JM. Chlorpyrifos: pollution and remediation. Environ Chem Lett. 2015;13:269–91. https://doi.org/10.1007/s10311-015-0513-7.

    Article  CAS  Google Scholar 

  19. Ur Rahman HU, Asghar W, Nazir W, Sandhu MA, Ahmed A, Khalid N. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Sci Total Environ. 2020. https://doi.org/10.1016/j.scitotenv.2020.142649.

  20. Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, et al. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol. 2008;38:1–125. https://doi.org/10.1080/10408440802272158.

    Article  CAS  Google Scholar 

  21. Ventura C, Zappia C, Lasagna M, Pavicic W, Richard S, Bolzan A, et al. Effects of the pesticide chlorpyrifos on breast cancer disease. Implication of epigenetic mechanisms. J Steroid Biochem Mol Biol. 2019. https://doi.org/10.1016/j.jsbmb.2018.09.021.

  22. Randhavane SB, Khambete AK. Hydrodynamic cavitation: an approach to degrade Chlorpyrifos pesticide from real effluent. KSCE J Civ Eng. 2018;22:2219–25. https://doi.org/10.1007/s12205-017-2045-0.

    Article  Google Scholar 

  23. Wu C, Linden KG. Phototransformation of selected organophosphorus pesticides: roles of hydroxyl and carbonate radicals. Water Res. 2010;44(12):3585–94.

    Article  CAS  Google Scholar 

  24. Yang G, Chen C, Wang Y, Cai L, Kong X, Qian Y, et al. Joint toxicity of chlorpyrifos, atrazine, and cadmium at lethal concentrations to the earthworm Eisenia fetida. Environ Sci Pollut Res. 2015;22:9307–15. https://doi.org/10.1007/s11356-015-4097-3.

    Article  CAS  Google Scholar 

  25. Gandhi K, Lari S, Tripathi D, Kanade G. Advanced oxidation processes for the treatment of chlorpyrifos, dimethoate and phorate in aqueous solution. J Water Reuse Desalination. 2016;6(1):195–203.

    Article  CAS  Google Scholar 

  26. Thuy PT, Anh NV, Van der Bruggen B. Evaluation of two low-cost–high-performance adsorbent materials in the waste-to-product approach for the removal of pesticides from drinking water. Clean (Weinh). 2012;40:246–53. https://doi.org/10.1002/clen.201100209.

    Article  CAS  Google Scholar 

  27. Affam AC, Chaudhuri M, Kutty SRM, Muda K. Degradation of chlorpyrifos, cypermethrin and chlorothalonil pesticides in aqueous solution by FeGAC/H2O2 process. Desalination Water Treat. 2016;57:5146–54. https://doi.org/10.1080/19443994.2014.1001441.

    Article  CAS  Google Scholar 

  28. Shokouhi SB, Dehghanzadeh R, Aslani H, Shahmahdi N. Activated carbon catalyzed ozonation (ACCO) of reactive blue 194 azo dye in aqueous saline solution: experimental parameters, kinetic and analysis of activated carbon properties. J Water Process Eng. 2020;35:101188. https://doi.org/10.1016/j.jwpe.2020.101188.

    Article  Google Scholar 

  29. Bethi B, Sonawane SH, Bhanvase BA, Gumfekar SP. Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process. 2016;109:178–89. https://doi.org/10.1016/j.cep.2016.08.016.

    Article  CAS  Google Scholar 

  30. Ghatak HR. Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater. Crit Rev Environ Sci Technol. 2014;44:1167–219. https://doi.org/10.1080/10643389.2013.763581.

    Article  CAS  Google Scholar 

  31. Sabeti Z, Alimohammadi M, Yousefzadeh S, Aslani H, Ghani M, Nabizadeh R. Application of response surface methodology for modeling and optimization of Bacillus subtilis spores inactivation by the UV/persulfate process. Water Sci Technol Water Supply. 2017;17:342–51. https://doi.org/10.2166/ws.2016.139.

    Article  CAS  Google Scholar 

  32. Nidheesh P, Rajan R. Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon. RSC Adv. 2016;6:5330–40. https://doi.org/10.1039/C5RA19987E.

    Article  CAS  Google Scholar 

  33. Babu DS, Srivastava V, Nidheesh P, Kumar MS. Detoxification of water and wastewater by advanced oxidation processes. Sci Total Environ. 2019;696:133961. https://doi.org/10.1016/j.scitotenv.2019.133961.

    Article  CAS  Google Scholar 

  34. Skoumal M, Cabot P-L, Centellas F, Arias C, Rodríguez RM, Garrido JA, et al. Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Appl Catal B. 2006;66:228–40. https://doi.org/10.1016/j.apcatb.2006.03.016.

    Article  CAS  Google Scholar 

  35. Vagı M, Petsas A, editors. Advanced oxidation processes for the removal of pesticides from wastewater: recent review and trends. 15th International Conference on Environmental Science and Technology. Rhode: CEST2017; 2017.

    Google Scholar 

  36. Poyatos JM, Muñio M, Almecija M, Torres J, Hontoria E, Osorio F. Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut. 2010;205:187–204. https://doi.org/10.1007/s11270-009-0065-1.

    Article  CAS  Google Scholar 

  37. Pirkanniemi K, Sillanpää M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere. 2002;48:1047–60. https://doi.org/10.1016/S0045-6535(02)00168-6.

    Article  CAS  Google Scholar 

  38. Lide DR. Physical constants of organic compounds. CRC Handbook Chem Phys. 2005;89:3–1.

    Google Scholar 

  39. WHO, 2004. Chlorpyrifos in drinking-water. World Health Organization.

  40. WHO. Specifications and evaluations for public health pesticides. Chlorpyrifos O, O-diethyl O-3, 5, 6-trichloro-2-pyridyl phosphorothioate. Geneva: World Health Organization; 2009.

    Google Scholar 

  41. Samy M, Ibrahim MG, Alalm MG, Fujii M, Diab KE, ElKady M. Innovative photocatalytic reactor for the degradation of chlorpyrifos using a coated composite of ZrV2O7 and graphene nano-platelets. Chem Eng Technol. 2020;395:124974. https://doi.org/10.1016/j.cej.2020.124974.

    Article  CAS  Google Scholar 

  42. Dewil R, Mantzavinos D, Poulios I, Rodrigo MA. New perspectives for advanced oxidation processes. J Environ Manag. 2017;195:93–9.

    Article  CAS  Google Scholar 

  43. Ikehata K, El-Din MG. Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. Environ Eng Sci. 2006;5:81–135. https://doi.org/10.1139/s05-046.

    Article  CAS  Google Scholar 

  44. Ramin N, Mahmood A, Hasan A, Alireza M, Kazem N, Reza N, et al. Comparative study of Fenton’s reagent performance in disinfection of raw wastewater and activated sludge effluent. Desalination Water Treat. 2012;37:108–13. https://doi.org/10.1080/19443994.2012.661261.

    Article  CAS  Google Scholar 

  45. Aslani H, Nabizadeh R, Alimohammadi M, Mesdaghinia A, Nadafi K, Nemati R, et al. Disinfection of raw wastewater and activated sludge effluent using Fenton like reagent. J Environ Health Sci Eng. 2014;12:149. https://doi.org/10.1186/s40201-014-0149-8.

    Article  CAS  Google Scholar 

  46. Saini R, Kumar Mondal M, Kumar P. Fenton oxidation of pesticide methyl parathion in aqueous solution: kinetic study of the degradation. Environ Prog Sustain Energy. 2017;36:420–7. https://doi.org/10.1002/ep.12473.

    Article  CAS  Google Scholar 

  47. Nidheesh PV, Gandhimathi R, Ramesh ST. Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res. 2013;20:2099–132. https://doi.org/10.1007/s11356-012-1385-z.

    Article  CAS  Google Scholar 

  48. Chaudhuri M, Kutty S. Fenton treatment of Chlorpyrifos, Cypermethrin and Chlorothanonil pesticides in Aquous solution. Environ Sci Technol. 2012;5:407–18. https://doi.org/10.3923/jest.2012.407.418.

    Article  CAS  Google Scholar 

  49. Saini R, Kumar P. Optimization of chlorpyrifos degradation by Fenton oxidation using CCD and ANFIS computing technique. J Environ Chem Eng. 2016;4:2952–63. https://doi.org/10.1016/j.jece.2016.06.003.

    Article  CAS  Google Scholar 

  50. Ameta R, Chohadia AK, Jain A, Punjabi PB. Fenton and photo-Fenton processes. Advanced Oxidation Processes for Waste Water Treatment. 2018:49–87.

  51. Affam AC, Chaudhuri M. UV photo-Fenton treatment of combined Chlorpyrifos, Cypermethrin and Chlorothalonil pesticides aqueous solution. Nat Environ Pollut Technol. 2013;12:105–10.

    CAS  Google Scholar 

  52. Murillo R, Sarasa J, Lanao M, Ovelleiro J. Degradation of chlorpyriphos in water by advanced oxidation processes. Water Sci Technol Water Supply. 2010;10:1–6. https://doi.org/10.2166/ws.2010.777.

    Article  CAS  Google Scholar 

  53. Wu C, Linden KG. Degradation and byproduct formation of parathion in aqueous solutions by UV and UV/H2O2 treatment. Water Res. 2008;42:4780–90. https://doi.org/10.1016/j.watres.2008.08.023.

    Article  CAS  Google Scholar 

  54. de Oliveira AG, Ribeiro JP, de Oliveira JT, De Keukeleire D, Duarte MS. Do Nascimento RF. Degradation of the pesticide chlorpyrifos in aqueous solutions with UV/H2O2: optimization and effect of interfering anions. J Adv Oxid Technol. 2014;17(1):133–8.

    Google Scholar 

  55. Femia J, Mariani M, Zalazar C, Tiscornia I. Photodegradation of chlorpyrifos in water by UV/H2O2 treatment: toxicity evaluation. Water Sci Technol. 2013;68:2279–86. https://doi.org/10.2166/wst.2013.493.

    Article  CAS  Google Scholar 

  56. Gomez S, Marchena CL, Pizzio L, Pierella L. Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution. J Hazard Mater. 2013;258-259:19–26. https://doi.org/10.1016/j.jhazmat.2013.04.030.

    Article  CAS  Google Scholar 

  57. Gaya UI, Abdullah AH. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C. 2008;9:1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003.

    Article  CAS  Google Scholar 

  58. Amiri H, Nabizadeh R, Martinez SS, Shahtaheri SJ, Yaghmaeian K, Badiei A, et al. Response surface methodology modeling to improve degradation of Chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicol Environ Saf. 2018;147:919–25. https://doi.org/10.1016/j.ecoenv.2017.09.062.

    Article  CAS  Google Scholar 

  59. Samet Y, Agengui L, Abdelhédi R. Anodic oxidation of chlorpyrifos in aqueous solution at lead dioxide electrodes. J Electroanal Chem. 2010;650:152–8. https://doi.org/10.1016/j.jelechem.2010.08.008.

    Article  CAS  Google Scholar 

  60. Pathiraja G, Wijesingha M, Nanayakkara N, editors. Ti/IrO2/SnO2 anode for electrochemical degradation of chlorpyrifos in water: optimization and degradation performances. IOP Conference Series: Materials Science and Engineering; 2017: IOP Publishing.

  61. Malakootian M, Shahesmaeili A, Faraji M, Amiri H, Martinez SS. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: a systematic review and meta-analysis. Process Saf Environ Prot. 2019;134:292–307. https://doi.org/10.1016/j.psep.2019.12.004.

    Article  CAS  Google Scholar 

  62. Ziembowicz S, Kida M, Koszelnik P. The impact of selected parameters on the formation of hydrogen peroxide by sonochemical process. Sep Purif Technol. 2018;204:149–53. https://doi.org/10.1016/j.seppur.2018.04.073.

    Article  CAS  Google Scholar 

  63. Pirsaheb M, Moradi N. Sonochemical degradation of pesticides in aqueous solution: investigation on the influence of operating parameters and degradation pathway–a systematic review. RSC Adv. 2020;10:7396–423. https://doi.org/10.1039/C9RA11025A.

    Article  CAS  Google Scholar 

  64. Chakma S, Moholkar VS. Numerical simulation and investigation of system parameters of sonochemical process. Chin J Eng. 2013;2013:1–14. https://doi.org/10.1155/2013/362682.

    Article  Google Scholar 

  65. Guzman-Duque F, Pétrier C, Pulgarin C, Peñuela G, Torres-Palma RA. Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultrason Sonochem. 2011;18:440–6. https://doi.org/10.1016/j.ultsonch.2010.07.019.

    Article  CAS  Google Scholar 

  66. Agarwal S, Tyagi I, Gupta VK, Dehghani MH, Bagheri A, Yetilmezsoy K, et al. Degradation of azinphos-methyl and chlorpyrifos from aqueous solutions by ultrasound treatment. J Mol Liq. 2016;221:1237–42. https://doi.org/10.1016/j.molliq.2016.04.076.

    Article  CAS  Google Scholar 

  67. Jan S, Kamili AN, Parween T, Hamid R, Parray JA, Siddiqi T, et al. Feasibility of radiation technology for wastewater treatment. Desalination Water Treat. 2015;55:2053–68. https://doi.org/10.1080/19443994.2014.937749.

    Article  Google Scholar 

  68. Rivera-Utrilla J, Sánchez-Polo M, Ocampo-Pérez R, López-Peñalver JJ, Velo-Gala I, Mota AJ. Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation. Sci Total Environ. 2016;569-570:518–26. https://doi.org/10.1016/j.scitotenv.2016.06.114.

    Article  CAS  Google Scholar 

  69. Lee B, Lee M. Decomposition of 2, 4, 6-trinitrotoluene (TNT) by gamma irradiation. Environ Sci Technol. 2005;39:9278–85. https://doi.org/10.1021/es0489590.

    Article  CAS  Google Scholar 

  70. Zaouak A, Noomen A, Jelassi H. Gamma radiation induced degradation of the phenoxy acid herbicide diclofop-methyl in aqueous solutions. Appl Radiat Isot. 2019;156:108939. https://doi.org/10.1016/j.apradiso.2019.108939.

    Article  CAS  Google Scholar 

  71. Chu L, Zhuan R, Chen D, Wang J, Shen Y. Degradation of macrolide antibiotic erythromycin and reduction of antimicrobial activity using persulfate activated by gamma radiation in different water matrices. Chem Eng Technol. 2019;361:156–66. https://doi.org/10.1016/j.cej.2018.12.072.

    Article  CAS  Google Scholar 

  72. Alkhuraiji TS, Boukari SO, Alfadhl FS. Gamma irradiation-induced complete degradation and mineralization of phenol in aqueous solution: effects of reagent. J Hazard Mater. 2017;328:29–36. https://doi.org/10.1016/j.jhazmat.2017.01.004.

    Article  CAS  Google Scholar 

  73. Hossain M, Fakhruddin A, Chowdhury MAZ, Alam MK. Degradation of chlorpyrifos, an organophosphorus insecticide in aqueous solution with gamma irradiation and natural sunlight. J Environ Chem Eng. 2013;1:270–4. https://doi.org/10.1016/j.jece.2013.05.006.

    Article  CAS  Google Scholar 

  74. Olmez-Hanci T, Arslan-Alaton I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem Eng Technol. 2013;224:10–6. https://doi.org/10.1016/j.cej.2012.11.007.

    Article  CAS  Google Scholar 

  75. Duan X, Yang S, Wacławek S, Fang G, Xiao R, Dionysiou DD. Limitations and prospects of sulfate-radical based advanced oxidation processes. J Environ Chem Eng. 2020;8:103849. https://doi.org/10.1016/j.jece.2020.103849.

    Article  CAS  Google Scholar 

  76. Zhou L, Zhang Y, Ying R, Wang G, Long T, Li J, et al. Thermoactivated persulfate oxidation of pesticide chlorpyrifos in aquatic system: kinetic and mechanistic investigations. Environ Sci Pollut Res. 2017;24:11549–58. https://doi.org/10.1007/s11356-017-8672-7.

    Article  CAS  Google Scholar 

  77. Shah NS, Khan JA, Sayed M, Khan ZUH, Iqbal J, Imran M, et al. Nano zerovalent zinc catalyzed peroxymonosulfate based advanced oxidation technologies for treatment of chlorpyrifos in aqueous solution: a semi-pilot scale study. J Clean Prod. 2020;246:119032. https://doi.org/10.1016/j.jclepro.2019.119032.

    Article  CAS  Google Scholar 

  78. Shahmahdi N, Dehghanzadeh R, Aslani H, Shokouhi SB. Performance evaluation of waste iron shavings (Fe0) for catalytic ozonation in removal of sulfamethoxazole from municipal wastewater treatment plant effluent in a batch mode pilot plant. Chem Eng Technol. 2020;383:123093. https://doi.org/10.1016/j.cej.2019.123093.

    Article  CAS  Google Scholar 

  79. Esplugas S, Gimenez J, Contreras S, Pascual E, Rodriguez M. Comparison of different advanced oxidation processes for phenol degradation. Water Res. 2002. https://doi.org/10.1016/S0043-1354(01)00301-3.

  80. Badawy MI, Ghaly MY, Gad-Allah TA. Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination. 2006;194:166–75. https://doi.org/10.1016/j.desal.2005.09.027.

    Article  CAS  Google Scholar 

  81. Oturan MA, Aaron J-J. Advanced oxidation processes in water/wastewater treatment: principles and applications a review. Crit Rev Environ Sci Technol. 2014. https://doi.org/10.1080/10643389.2013.829765.

  82. Babu SG, Ashokkumar M, Neppolian B. The role of ultrasound on advanced oxidation processes. Top Curr Chem. 2016;374:75. https://doi.org/10.1007/s41061-016-0072-9.

    Article  CAS  Google Scholar 

  83. Devi P, Das U, Dalai AK. In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Sci Total Environ. 2016;571:643–57. https://doi.org/10.1016/j.scitotenv.2016.07.032.

    Article  CAS  Google Scholar 

  84. Feng M, Cizmas L, Wang Z, Sharma VK. Synergistic effect of aqueous removal of fluoroquinolones by a combined use of peroxymonosulfate and ferrate (VI). Chemosphere. 2017;177:144–8. https://doi.org/10.1016/j.chemosphere.2017.03.008.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Health and Environment Research Center, the Tabriz University of Medical Sciences (Iran), for supporting this study (Grant No. 63863).

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable for this study.

Funding

This study was supported by Tabriz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Samira Sheikhi], [Reza Dehghanzadeh] and [Hassan Aslani]. The first draft of the manuscript was written by [Samira Sheikhi] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hassan Aslani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• CPF is one of the most common organophosphate pesticides, used to control agricultural pests.

• CPF pollution in the environment is considered important public health concern.

• The AOPs are particularly attractive for the degradation of pesticides, including CPF in low concentrations.

• Sulfate radical based AOPs are widely accepted due to the higher oxidation potential.

• The efficiency of AOPs decreases with increasing initial pesticide concentration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhi, S., Dehghanzadeh, R. & Aslani, H. Advanced oxidation processes for chlorpyrifos removal from aqueous solution: a systematic review. J Environ Health Sci Engineer 19, 1249–1262 (2021). https://doi.org/10.1007/s40201-021-00674-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00674-1

Keywords

Navigation