Skip to main content

Advertisement

Log in

Health risk assessment and source apportionment of heavy metals in atmospheric dustfall in a city of Khuzestan Province, Iran

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

The heavy metals in the atmospheric particulate matters are now considered a risk for humans and the environment. The purpose of this study was to assess the concentration, source apportionment, and health risk of heavy metals in atmospheric dustfall in Dezful City of Khuzestan Province, Iran. The dustfall samples were collected from five locations every month for one year (2018–2019). The heavy metals ( lead (Pb), cadmium (Cd), chromium (Cr), iron (Fe), and nickel (Ni)) contents of dustfall samples were determined by ICP-OES. The monthly mean of dustfall for five sampling locations was 22.81 ± 21.9 ton.km− 2.month− 1. The mean concentrations of the examined heavy metals were assessed as Fe > Cr > Ni > Pb > Cd. The highest enrichment level belonged to Cd (59.35 ± 128.18) and all heavy metals had enrichment levels beyond 10. The HI (Hazard Index) values were less than one and there was no significant non-carcinogenic risk due to these heavy metals. For children, Ni showed the most HI with a value of 0.205. The calculations demonstrate that the obtained values of cancer risk in both groups are less than the acceptable range (10− 6 to 10− 4). The PMF (Positive Matrix Factorization) results indicated four main sources of pollutants, namely, vehicular exhaust, industrial, road dust, and nonferrous smelting. The results of the study revealed that industrial activities and traffic play crucial roles in increasing the heavy metals contamination of dustfall in Dezful City.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holnicki P, Kałuszko A, Nahorski Z, Stankiewicz K, Trapp W. Air quality modeling for Warsaw agglomeration. Arch Environ Prot. 2017;43:48–64.

    Article  Google Scholar 

  2. Kumar S. Appraisal of heavy metal concentration in selected vegetables exposed to different degrees of pollution in Agra, India. Environ Monit Assess. 2013;185:2683–90.

    Article  CAS  Google Scholar 

  3. Adachi K, Tainosho Y. Single particle characterization of size-fractionated road sediments. Appl Geochem. 2005;20:849–59.

    Article  CAS  Google Scholar 

  4. Moghanlo S, Alavinejad M, Oskoei V, Saleh HN, Mohammadi AA, Mohammadi H, et al. Using artificial neural networks to model the impacts of climate change on dust phenomenon in the Zanjan region, north-west Iran. Urban Climate. 2021;35:100750

  5. Karimi H, Nikaeen M, Gholipour S, Hatamzadeh M, Hassanzadeh A, Hajizadeh Y. PM 2.5-associated bacteria in ambient air: Is PM 2.5 exposure associated with the acquisition of community-acquired staphylococcal infections? J Environ Health Sci Eng. 2020;18:1007–13.

    Article  Google Scholar 

  6. Sipos P, Kovács VK, Márton E, Németh T, May Z, Szalai Z. Lead and zinc in the suspended particulate matter and settled dust in Budapest, Hungary. Eur Chem Bull. 2012;1:449–54.

    CAS  Google Scholar 

  7. Khuzestani RB, Souri B. Evaluation of heavy metal contamination hazards in nuisance dust particles, in Kurdistan Province, western Iran. J Environ Sci. 2013;25:1346–54.

    Article  CAS  Google Scholar 

  8. Dehghani MH, Jarahzadeh S, Hadei M, Mansouri N, Rashidi Y, Yousefi M. The data on the dispersion modeling of traffic-related PM10 and CO emissions using CALINE3; A case study in Tehran, Iran. Data Brief. 2018;19:2284–90.

    Article  Google Scholar 

  9. Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360:1233–42.

    Article  CAS  Google Scholar 

  10. Cheng M-F, Ho S-C, Chiu H-F, Wu T-N, Chen P-S, Yang C-Y. Consequences of exposure to Asian dust storm events on daily pneumonia hospital admissions in Taipei, Taiwan. J Toxicol Environ Health A. 2008;71:1295–9.

    Article  CAS  Google Scholar 

  11. Choi H, Zhang Y, Kim K-H. Sudden high concentration of TSP affected by atmospheric boundary layer in Seoul metropolitan area during duststorm period. Environ Int. 2008;34:635–47.

    Article  CAS  Google Scholar 

  12. Chung Y-s, Kim H-s, Dulam J, Harris J. On heavy dustfall observed with explosive sandstorms in Chongwon-Chongju, Korea in 2002. Atmos Environ. 2003;37:3425–33.

    Article  CAS  Google Scholar 

  13. De Longueville F, Hountondji Y-C, Henry S, Ozer P. What do we know about effects of desert dust on air quality and human health in West Africa compared to other regions? Sci Total Environ. 2010;409:1–8.

    Article  Google Scholar 

  14. Feng S, Liu H, Zhang N, Lin H, Du X, Liu Y. Contamination assessment of copper, lead, zinc and chromium in dust fall of Jinan, NE China. Environ Earth Sci. 2012;66:1881–6.

    Article  CAS  Google Scholar 

  15. Masjedi MR, Dobaradaran S, Keshmiri S, Taghizadeh F, Arfaeinia H, Fanaei F, Behroozi M, Nasrzadeh F, Joukar M. Use of toenail-bounded heavy metals to characterize occupational exposure and oxidative stress in workers of waterpipe/cigarette cafés. Environ Geochem Health. 2020. https://doi.org/10.1007/s10653-020-00751-8.

  16. Li X, Poon C-s, Liu PS. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem. 2001;16:1361–8.

    Article  CAS  Google Scholar 

  17. Torkashvand J, Jafari AJ, Hopke PK, Shahsavani A, Hadei M, Kermani M. Airborne particulate matter in Tehran’s ambient air. J Environ Health Sci Eng.2021. https://doi.org/10.1007/s40201-020-00573-x.

  18. Nabizadeh R, Yousefi M, Azimi F. Study of particle number size distributions at Azadi terminal in Tehran, comparing high-traffic and no traffic area. MethodsX. 2018;5:1549–55.

    Article  Google Scholar 

  19. Kurt-Karakus PB. Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk. Environ Int. 2012;50:47–55.

    Article  CAS  Google Scholar 

  20. Boonyatumanond R, Murakami M, Wattayakorn G, Togo A, Takada H, Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Sci Total Environ. 2007;384:420–432.

  21. Han Y, Cao J, Posmentier ES, Fung K, Tian H, An Z. Particulate-associated potentially harmful elements in urban road dusts in Xi’an, China. Appl Geochem. 2008;23:835–45.

    Article  CAS  Google Scholar 

  22. Harrad S, Ibarra C, Diamond M, Melymuk L, Robson M, Douwes J, Roosens L, Dirtu AC, Covaci A. Polybrominated diphenyl ethers in domestic indoor dust from Canada, New Zealand, United Kingdom and United States. Environ Int. 2008;34:232–8.

    Article  CAS  Google Scholar 

  23. Kvietkus K, Šakalys J, Valiulis D. Trends of atmospheric heavy metal deposition in Lithuania. Lith J Phys. 2011;51:359–69.

  24. Wang L, Lu X, Ren C, Li X, Chen C. Contamination assessment and health risk of heavy metals in dust from Changqing industrial park of Baoji, NW China. Environ Earth Sci. 2014;71:2095–104.

    Article  CAS  Google Scholar 

  25. Yongming H, Peixuan D, Junji C, Posmentier ES. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ. 2006;355:176–86.

    Article  Google Scholar 

  26. Ghrefat HA, Abu-Rukah Y, Rosen MA. Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environ Monit Assess. 2011;178:95–109.

    Article  CAS  Google Scholar 

  27. Qiao Q, Huang B, Zhang C, Piper JD, Pan Y, Sun Y. Assessment of heavy metal contamination of dustfall in northern China from integrated chemical and magnetic investigation. Atmos Environ. 2013;74:182–93.

    Article  CAS  Google Scholar 

  28. Chen H, Lu X, Chang Y, Xue W. Heavy metal contamination in dust from kindergartens and elementary schools in Xi’an, China. Environ Earth Sci. 2014;71:2701–9.

    Article  CAS  Google Scholar 

  29. Rashki A, Eriksson PG, Rautenbach CdW, Kaskaoutis DG, Grote W, Dykstra J. Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere. 2013;90:227–236.

  30. Soriano A, Pallarés S, Pardo F, Vicente A, Sanfeliu T, Bech J. Deposition of heavy metals from particulate settleable matter in soils of an industrialised area. J Geochem Explor. 2012;113:36–44.

    Article  CAS  Google Scholar 

  31. Jafarzadeh S, Fard RF, Ghorbani E, Saghafipour A, Moradi-Asl E, Ghafuri Y. Potential risk assessment of heavy metals in the Aharchai River in northwestern Iran. Phys Chem Earth Parts A/B/C. 2020;115:102812.

    Article  Google Scholar 

  32. Trujillo-González JM, Torres-Mora MA, Keesstra S, Brevik EC, Jiménez-Ballesta R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci Total Environ. 2016;553:636–42.

    Article  Google Scholar 

  33. Li H-H, Chen L-J, Yu L, Guo Z-B, Shan C-Q, Lin J-Q, Gu Y-G, Yang Z-B, Yang Y-X, Shao J-R. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci Total Environ. 2017;586:1076–84.

    Article  CAS  Google Scholar 

  34. Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh AR, Jaafarzadeh N, Kermani M. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci Total Environ. 2015;505:712–23.

    Article  CAS  Google Scholar 

  35. Gope M, Masto RE, George J, Hoque RR, Balachandran S. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol Environ Saf. 2017;138:231–41.

    Article  CAS  Google Scholar 

  36. Leung AO, Duzgoren-Aydin NS, Cheung K, Wong MH. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ Sci Technol. 2008;42:2674–80.

    Article  CAS  Google Scholar 

  37. Banerjee AD. Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environ Pollut. 2003;123:95–105.

    Article  CAS  Google Scholar 

  38. Atiemo MS, Ofosu GF, Kuranchie-Mensah H, Tutu AO, Palm N, Blankson SA. Contamination assessment of heavy metals in road dust from selected roads in Accra, Ghana. Res J Environ Earth Sci. 2011;3:473–80.

    CAS  Google Scholar 

  39. Kermani M, Jafari AJ, Gholami M, Arfaeinia H, Shahsavani A, Fanaei F. Characterization, possible sources and health risk assessment of PM2. 5-bound Heavy Metals in the most industrial city of Iran. J Environ Health Sci Eng. 2021. https://doi.org/10.1007/s40201-020-00589-3.

  40. U.S.E.P.A.O.o. Emergency R, Response, Risk Assessment guidance for superfund: interim final. Washington, D.C: Office of Emergency and Remedial Response, US Environmental Protection Agency. 1989.

  41. Utembe S, Cooke M, Archibald A, Shallcross D, Derwent R, Jenkin M. Simulating secondary organic aerosol in a 3-D Lagrangian chemistry transport model using the reduced Common Representative Intermediates mechanism (CRI v2-R5). Atmos Environ. 2011;45:1604–14.

    Article  CAS  Google Scholar 

  42. Wang J, Zhang X, Yang Q, Zhang K, Zheng Y, Zhou G. Pollution characteristics of atmospheric dustfall and heavy metals in a typical inland heavy industry city in China. J Environ Sci. 2018;71:283–91.

  43. Wang R, Zou X, Cheng H, Wu X, Zhang C, Kang L. Spatial distribution and source apportionment of atmospheric dust fall at Beijing during spring of 2008–2009. Environ Sci Pollut Res. 2015;22:3547–57.

    Article  CAS  Google Scholar 

  44. Kermani M, Jafari AJ, Gholami M, Arfaeinia H, Yousefi M, Shahsavani A, et al. Spatio-seasonal variation, distribution, levels, and risk assessment of airborne asbestos concentration in the most industrial city of Iran: effect of meteorological factors. Environ Sci Pollut Res. 2021. https://doi.org/10.1007/s11356-020-11941-3.

  45. Foster J, Beatty G, Howes J Jr. Interlaboratory cooperative study of the precision and accuracy of measurements of dustfall using ASTM Method D 1739, in, ASTM Report, 1739.

  46. Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol. 2017;27:R713-5.

    Article  CAS  Google Scholar 

  47. Zadeh MM, Shahandeh K, Bigdeli S, Basseri HR. Conflict in neighboring countries, a great risk for malaria elimination in Southwestern Iran: narrative review article. Iran J Public Health. 2014;43:1627.

    Google Scholar 

  48. Baratisedeh P, Afzalinia F, Bosshaq MR, Salarvand I. Evaluation of climatic comfort inside and outside the buildings-a case study of Dezful in Iran, . Bull Environ Pharmacol Life Sci. 2014;3:205–12.

    Google Scholar 

  49. Molaee SM, Ahmadi KA, Vazirianzadeh B, Moravvej SA. A climatological study of scorpion sting incidence from 2007 to 2011 in the Dezful area of Southwestern Iran, using a time series model. J Insect Sci. 2014;14:151. https://doi.org/10.1093/jisesa/ieu013.

  50. Katz M, Organization WH. Measurement of air pollutants: guide to the selection of methods. Geneva:World Health Organization. 1969.

  51. Hsu SC, Liu SC, Huang YT, Lung SCC, Tsai F, Tu JY, Kao SJ. A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007. J Geophys Res Atmos. 2008;113, D18306.

  52. Reimann C, Caritat Pd. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol. 2000;34:5084–91.

    Article  CAS  Google Scholar 

  53. Loska K, Wiechuła D, Korus I. Metal contamination of farming soils affected by industry. Environ Int. 2004;30:159–65.

    Article  CAS  Google Scholar 

  54. Norouzi S, Khademi H, Ayoubi S, Cano AF, Acosta JA. Seasonal and spatial variations in dust deposition rate and concentrations of dust-borne heavy metals, a case study from Isfahan, central Iran. Atmos Pollut Res. 2017;8:686–99.

    Article  Google Scholar 

  55. Al Bakain R, Jaradat Q, Momani K. Indoor and outdoor heavy metals evaluation in kindergartens in Amman, Jordan. 2012.

  56. Yaroshevsky A. Abundances of chemical elements in the Earth’s crust. Geochem Int. 2006;44:48–55.

    Article  Google Scholar 

  57. Ferreira-Baptista L, De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ. 2005;39:4501–12.

    Article  CAS  Google Scholar 

  58. US EPA.  Supplemental guidance for developing soil screening levels for superfund sites. Office of Solid Waste and Emergency Response, Washington, D.C.2002;9355.4–24. http://www.epa.gov/superfund/health/conmedia/soil/index.htm.

  59. Mojarrad H, Fouladi Fard R, Rezaali M, Heidari H, Izanloo H, Mohammadbeigi A, Mohammadi A, Sorooshian A. Spatial trends, health risk assessment and ozone formation potential linked to BTEX. Hum Ecol Risk Assess Int J. 2019:1–22.

  60. Hu X, Zhang Y, Luo J, Wang T, Lian H, Ding Z. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing China. Environ Pollut. 2011;159:1215–21.

    Article  CAS  Google Scholar 

  61. Zheng N, Liu J, Wang Q, Liang Z. Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China. Atmos Environ. 2010;44:3239–45.

    Article  CAS  Google Scholar 

  62. U.S. EPA. . Child-Specific Exposure Factors Handbook (Interim Report). EPA-600-P-00-002B. Washington, DC:U.S. Environmental Protection Agency. 2002.

  63. Exposure Factors UEPA Handbook: 2011 Edition. EPA/600/R-09/052F. Washington, DC:US EPA, Office of Research and Development. 2011.

  64. Van den Berg, R. “Human Exposure to Soil Contamination: A Qualitative and Quantitative Analysis Towards Proposals for Human Toxicological Intervention Values (partly revised edition).” RIVM Rapport 725201011.1994

  65. USEPA. Regional Screening Levels (RSL) Tables. In: Kansas Department of Health and Environment (KDHE)/Bureau of Environmental Remediation (BER). Risk-Based Standards for Kansas (RSK) Manual, 5th Version.2010

  66. Lu X, Zhang X, Li LY, Chen H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ Res. 2014;128:27–34.

    Article  CAS  Google Scholar 

  67. LEAD RBO. Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods. Washington, DC: US Environmental Protection Agency, Office of Solid Waste and Emergency Response; 2007.

    Google Scholar 

  68. Fang C, Wang S, Yang S, Wen Z, Wang J. Source apportionment for atmospheric PM10 in Changchun with PMF and PCA model. Environ Sci Technol. 2015;38:17–21.

    CAS  Google Scholar 

  69. Hwang I, Kim D-S. Research trends of receptor models in Korea and foreign countries and improvement directions for air quality management. J Korea Soc Atmos Environ. 2013;29:459–76.

    Article  Google Scholar 

  70. Norris G, Duvall R, Brown S, Bai S. EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and user guide. Washington, DC 20460: US Environmental Protection Agency, Office of Research and Development. 2014.

  71. Mehr MR, Keshavarzi B, Sorooshian A. Influence of natural and urban emissions on rainwater chemistry at a southwestern Iran coastal site. Sci Total Environ. 2019;668:1213–21.

    Article  Google Scholar 

  72. Srimuruganandam B, Nagendra SS. Application of positive matrix factorization in characterization of PM10 and PM2. 5 emission sources at urban roadside. Chemosphere. 2012;88:120–30.

    Article  CAS  Google Scholar 

  73. Mohamed TA, Mohamed MA-K, Rabeiy R, Ghandour MA. A study of heavy metals in the dust fall around Assiut fertilizer plant. J Environ Prot. 2013;4:1488.

    Article  Google Scholar 

  74. Biglari H, Geravandi S, Mohammadi MJ, Porazmey EJ, Chuturkova RZ, Khaniabadi YO, Goudarzi G, Mahboubi M, Mohammadi B, Yari AR. Relationship between air particulate matter and meteorological parameters. Fresenius Environ Bull. 2017;26:4047–56.

    CAS  Google Scholar 

  75. Chate D, Pranesha T. Field studies of scavenging of aerosols by rain events. J Aerosol Sci. 2004;35:695–706.

    Article  CAS  Google Scholar 

  76. Pandey SK, Tripathi B, Mishra VK. Dust deposition in a sub-tropical opencast coalmine area, India. J Environ Manag. 2008;86:132–8.

    Article  CAS  Google Scholar 

  77. Reheis MC, Kihl R. Dust deposition in southern Nevada and California, 1984–1989: Relations to climate, source area, and source lithology. J Geophys Res Atmos. 1995;100:8893–918.

    Article  CAS  Google Scholar 

  78. Ta W, Xiao H, Qu J, Xiao Z, Yang G, Wang T, Zhang X. Measurements of dust deposition in Gansu Province, China, 1986–2000. Geomorphology. 2004;57:41–51.

    Article  Google Scholar 

  79. Al-Harbi M. Characteristics and composition of the falling dust in urban environment. Int J Environ Sci Technol. 2015;12:641–52.

    Article  CAS  Google Scholar 

  80. Yadav S, Rajamani V. Air quality and trace metal chemistry of different size fractions of aerosols in N–NW India—implications for source diversity. Atmos Environ. 2006;40:698–712.

    Article  CAS  Google Scholar 

  81. Cao H, Liu J, Wang G, Yang G, Luo L. Identification of sand and dust storm source areas in Iran. J Arid Land. 2015;7:567–78.

    Article  Google Scholar 

  82. Liu L, Shi P, Gao S, Zou X, Erdon H, Yan P, Li X, Ta W, Wang J, Zhang C. Dustfall in China’s western loess plateau as influenced by dust storm and haze events. Atmos Environ. 2004;38:1699–703.

    Article  CAS  Google Scholar 

  83. Rani N, Sastry BS, Dey K. Assessment of metal contamination and the associated human health risk from dustfall deposition: a study in a mid-sized town in India. Environ Sci Pollut Res. 2019;26:23173–91.

    Article  CAS  Google Scholar 

  84. Laghari SK, Shaheen G, Bakish G. Chemical composition of traffic generated dust and its impact on human health with associated problems in quetta. Sci Technol Dev (Islamabad). 2013;32:154–64.

    Google Scholar 

  85. Crabtree GW. Dustfall on the southern high plains of Texas. ​Ms. Thesis, Texas Tech University. 2005. 

  86. Naddafi K, Nabizadeh R, Soltanianzadeh Z, Ehrampoosh M. Evaluation of dustfall in the air of Yazd. J Environ Health Sci Eng. 2006;3(3):161–8.

  87. Malakootian M, Ghiasseddin M, Akbari H, Jaafarzadeh-Haghighi Fard N. Urban Dust Fall Concentration and its Properties in Kerman City, Iran. Health Scope. 2013;1(4):194–200.

  88. Fard RF, Naddafi K, Hassanvand MS, Khazaei M, Rahmani F. Trends of metals enrichment in deposited particulate matter at semi-arid area of Iran. Environ Sci Pollut Res. 2018;25:18737–51.

    Article  Google Scholar 

  89. Rajabi M, Souri B. Evaluation of heavy metals among dustfall particles of Sanandaj, Khorramabad and Andimeshk cities in western Iran2012-2013. Iran J Health Environ. 2015;8:11–22.

    Google Scholar 

  90. Imandel K, Ghiaseddin M, Pakseresht T. Dustfall concentration and analyses at two stations of Tehran, Iran. J Air Pollut Control Assoc. 1981;31:997–8.

    Article  CAS  Google Scholar 

  91. Eivazzadeh M, Yadeghari A, Gholampour A. Temporal and spatial variations of deposition and elemental composition of dust fall and its source identification around Tabriz, Iran. J Environ Health Sci Eng. 2019;17:29–40.

    Article  CAS  Google Scholar 

  92. Han L, Zhuang G, Cheng S, Wang Y, Li J. Characteristics of re-suspended road dust and its impact on the atmospheric environment in Beijing. Atmos Environ. 2007;41:7485–99.

    Article  CAS  Google Scholar 

  93. Lu A, Wang J, Qin X, Wang K, Han P, Zhang S. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci Total Environ. 2012;425:66–74.

    Article  CAS  Google Scholar 

  94. Taylor S. Abundance of chemical elements in the continental crust: a new table. Geochimica et cosmochimica acta. 1964;28(8):1273–85.

  95. Zheng X, Zhao W, Yan X, Shu T, Xiong Q, Chen F. Pollution characteristics and health risk assessment of airborne heavy metals collected from Beijing bus stations. Int J Environ Res Public Health. 2015;12:9658–71.

    Article  CAS  Google Scholar 

  96. Wan D, Han Z, Yang J, Yang G, Liu X. Heavy metal pollution in settled dust associated with different urban functional areas in a heavily air-polluted city in North China. Int J Environ Res Public Health. 2016;13:1119.

    Article  Google Scholar 

  97. Krolak E. Heavy metals in falling dust in Eastern Mazowieckie province. Pol J Environ Stud. 2000;9:517–22.

    CAS  Google Scholar 

  98. Rout TK, Masto RE, Padhy PK, George J, Ram LC, Maity S. Dust fall and elemental flux in a coal mining area. J Geochem Explor. 2014;144:443–55.

    Article  CAS  Google Scholar 

  99. Arslan M, Boybay M. A study on the characterization of dustfall. Atmos Environ Part A. 1990;24:2667–71.

    Article  Google Scholar 

  100. Eivazzadeh M, Yadeghari A, Gholampour A. Temporal and spatial variations of deposition and elemental composition of dust fall and its source identification around Tabriz, Iran. J Environ Health Sci Eng. 2019;17:29-40.

  101. Keshavarzi B, Tazarvi Z, Rajabzadeh MA, Najmeddin A. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmos Environ. 2015;119:1–10.

    Article  CAS  Google Scholar 

  102. Doabi SA, Afyuni M, Karami M. Multivariate statistical analysis of heavy metals contamination in atmospheric dust of Kermanshah province, western Iran, during the spring and summer 2013. J Geochem Explor. 2017;180:61–70.

    Article  CAS  Google Scholar 

  103. Dudu VP, Mathuthu M, Manjoro M. Assessment of heavy metals and radionuclides in dust fallout in the West Rand mining area of South Africa. Clean Air J. 2018;28:42–52.

    Article  Google Scholar 

  104. Lee P-K, Youm S-J, Jo HY. Heavy metal concentrations and contamination levels from Asian dust and identification of sources: a case-study. Chemosphere. 2013;91:1018–25.

    Article  CAS  Google Scholar 

  105. Meza-Figueroa D, De la O-Villanueva M. M.L. De la Parra, Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmos Environ. 2007;41:276–288.

  106. Saeedi M, Li LY, Salmanzadeh M. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater. 2012;227:9–17.

    Article  Google Scholar 

  107. Kamani H, Mahvi A, Seyedsalehi M, Jaafari J, Hoseini M, Safari G, Dalvand A, Aslani H, Mirzaei N, Ashrafi S. Contamination and ecological risk assessment of heavy metals in street dust of Tehran, Iran. Int J Environ Sci Technol. 2017;14:2675–82.

    Article  CAS  Google Scholar 

  108. U. EPA. Soil screening guidance: Technical background document| Superfund| US EPA, Washington, DC: US Environmental Protection Agency. [Accessed 7 March 2018]. 1996.

Download references

Funding

The authors appreciate the financial support provided by the Kashan University of Medical Sciences under the grant number of 96103. The Ethics code of this study was IR.KAUMS.NUHEPM.REC.1396.20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nezam Mirzaei.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafaii, G., Bakhtyari, Z., Atoof, F. et al. Health risk assessment and source apportionment of heavy metals in atmospheric dustfall in a city of Khuzestan Province, Iran. J Environ Health Sci Engineer 19, 585–601 (2021). https://doi.org/10.1007/s40201-021-00630-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00630-z

Keywords

Navigation