Skip to main content

Advertisement

Log in

Molecular detection of E. coli and Vibrio cholerae in ballast water of commercial ships: a primary study along the Persian Gulf

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Ballast water is one of the most important ways for the transfer of aquatic organisms such as Escherichia coli (E. coli) and Vibrio cholerae. The aim of this study was to investigate Mdh gene of E. coli and the OmpW gene of Vibrio cholerae bacteria by PCR technique in the ballast water of commercial ships entering Bushehr port along the Persian Gulf.

Methods

In this study, 34 samples of ballast water entered Bushehr port were studied by using culture and PCR methods to determine Mdh gene of E. coli and OmpW gene of Vibrio cholerae. Genomic DNA of bacterial strains was extracted and PCR was performed by using specific primers of E. coli and Vibrio cholerae.

Results

The specific Mdh gene of E. coli was detected in 4 ballast water samples and the positive samples were analyzed by antisera methods for E. coli O157:H7. Results of antisera showed that there were 3 positive samples of O157:H7 serotype. The results of the PCR technique showed that the OmpW gene of Vibrio cholerae was negative for all positive culture samples.

Conclusions

Further studies are highly recommended to monitor other aquatic organisms in ballast water to protect the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schnurr RE, Walker TR. Marine transportation and energy use. In: Reference module in earth systems and environmental sciences. Elsevier: Amsterdam; 2019.

  2. Cabrini M, Cerino F, de Olazabal A, Di Poi E, Fabbro C, Fornasaro D, et al. Potential transfer of aquatic organisms via ballast water with a particular focus on harmful and non-indigenous species: A survey from Adriatic ports. Mar Pollut Bull. 2019;147:16–35.

    Article  CAS  Google Scholar 

  3. Dobaradaran S, Soleimani F, Nabipour I, Saeedi R, Mohammadi MJ. Heavy metal levels of ballast waters in commercial ships entering Bushehr port along the Persian Gulf. Mar Pollut Bull. 2018;126:74–6.

    Article  CAS  Google Scholar 

  4. Singh B. Everything you wanted to know about ballast water exchange and management plan. J Mar Environ. 2016;18(4):964–82.

    Google Scholar 

  5. Kim Y, Aw TG, Teal TK, Rose JB. Metagenomic investigation of viral communities in ballast water. Environ Sci Technol. 2015;49(14):8396–407.

    Article  CAS  Google Scholar 

  6. Soleimani F, Dobaradaran S, Taherkhani R, Saeedi R, Mohammadi MJ, Keshtkar M, et al. Assessment of microbial and physiochemical quality of ballast water in commercial ships entering Bushehr port, along the Persian Gulf. Desalin Water Treat. 2017;98:190–5.

    Article  CAS  Google Scholar 

  7. Soleimani F, Dobaradaran S, Hayati A, Khorsand M, Keshtkar M. Data onmetals (Zn, Al, Sr, andCo) andmetalloid (As) concent rationlevels of ballastwaterincommercial ships entering Bushehr port, alongthe Persian Gulf. Data Brief. 2016;9:429–32.

    Article  Google Scholar 

  8. Elçiçek H, Parlak A, Cakmakci M. Effect of ballast water on marine and coastal ecology. J Selcuk Univ Nat Appl Sci. 2013;1:454–63.

    Google Scholar 

  9. Gollasch S, Minchin D, David M. The transfer of harmful aquatic organisms and pathogens with ballast water and their impacts. Global maritime transport and ballast water management. Berlin: Springer; 2015. p. 35–58.

  10. Lymperopoulou DS, Dobbs FC. Bacterial diversity in ships’ ballast water, ballast-water exchange, and implications for ship-mediated dispersal of microorganisms. Environ Sci Technol. 2017;51(4):1962–72.

    Article  CAS  Google Scholar 

  11. Brinkmeyer R. Diversity of bacteria in ships ballast water as revealed by next generation DNA sequencing. Mar Pollut Bull. 2016;107(1):277–85.

    Article  CAS  Google Scholar 

  12. Petersen NB, Madsen T, Glaring MA, Dobbs FC, Jørgensen NO. Ballast water treatment and bacteria: Analysis of bacterial activity and diversity after treatment of simulated ballast water by electrochlorination and UV exposure. Sci Total Environ. 2019;648:408–21.

    Article  CAS  Google Scholar 

  13. Ng C, Le T-H, Goh SG, Liang L, Kim Y, Rose JB, et al. Correction: A comparison of microbial water quality and diversity for ballast and tropical harbor waters. PLoS One. 2016;11(4):e0154652.

    Article  Google Scholar 

  14. Burkholder JM, Hallegraeff GM, Melia G, Cohen A, Bowers HA, Oldach DW, et al. Phytoplankton and bacterial assemblages in ballast water of US military ships as a function of port of origin, voyage time, and ocean exchange practices. Harmful Algae. 2007;6(4):486–518.

    Article  CAS  Google Scholar 

  15. Altug G, Gurun S, Cardak M, Ciftci PS, Kalkan S. The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Mar Environ Res. 2012;81:35–42.

    Article  CAS  Google Scholar 

  16. Pereira NN, Brinati HL. Onshore ballast water treatment: A viable option for major ports. Mar Pollut Bull. 2012;64(11):2296–304.

    Article  CAS  Google Scholar 

  17. Dobroski N, Scianni C, Gehringer D, Falkner M. Assessment of the efficacy, availability and environmental impacts of ballast water treatment systems for use in California waters. Sacramento: California State Lands Commission Marine Facilities Division; 2009.

    Google Scholar 

  18. Branger C, Blanchard B, Fillonneau C, Suard I, Aviat F, Chevallier B, et al. Polymerase chain reaction assay specific for pathogenic Leptospira based on the gene hap1 encoding the hemolysis-associated protein-1. FEMS Microbiol Lett. 2005;243(2):437–45.

    Article  CAS  Google Scholar 

  19. Xia X, Meng J, McDermott PF, Ayers S, Blickenstaff K, Tran T-T, et al. Presence and characterization of Shiga toxin-producing Escherichia coli and other potentially diarrheagenic E. coli strains in retail meats. Appl Environ Microbiol. 2010;76(6):1709–17.

    Article  CAS  Google Scholar 

  20. Maheshwari M, Nelapati K, Kiranmayi B. Vibrio cholerae-a review. Vet World. 2011;4(9):423.

    Article  Google Scholar 

  21. Lekshmi N, Joseph I, Ramamurthy T, Thomas S. Changing facades of Vibrio cholerae: An enigma in the epidemiology of cholera. Indian J Med Res. 2018;147(2):133.

    Article  CAS  Google Scholar 

  22. Ottaviani D, Leoni F, Rocchegiani E, Santarelli S, Masini L, Di Trani V, et al. Prevalence and virulence properties of non-O1 non-O139 Vibrio cholerae strains from seafood and clinical samples collected in Italy. Int J Food Microbiol. 2009;132(1):47–53.

    Article  CAS  Google Scholar 

  23. Lukinmaa S, Mattila K, Lehtinen V, Hakkinen M, Koskela M, Siitonen A. Territorial waters of the Baltic Sea as a source of infections caused by Vibrio cholerae non-O1, non-O139: report of 3 hospitalized cases. Diagn Microbiol Infect Dis. 2006;54(1):1–6.

    Article  Google Scholar 

  24. Dutta D, Chowdhury G, Pazhani GP, Guin S, Dutta S, Ghosh S, et al. Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerg Infect Dis. 2013;19(3):464.

    Article  Google Scholar 

  25. De Keukeleire S, Hoste P, Crivits M, Hammami N, Piette A. Atypical manifestation of Vibrio cholerae: fear the water! Acta Clin Belg. 2018;73(6):462–4.

    Article  Google Scholar 

  26. Fykse EM, Nilsen T, Nielsen AD, Tryland I, Delacroix S, Blatny JM. Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water. Mar Pollut Bull. 2012;64(2):200–6.

    Article  CAS  Google Scholar 

  27. Rivera IN, Souza KM, Souza CP, Lopes RM. Free-living and plankton-associated vibrios: assessment in ballast water, harbor areas, and coastal ecosystems in Brazil. Front Microbiol. 2012;3:443.

    Google Scholar 

  28. Eyisi OA, Nwodo UU, Iroegbu CU. Distribution of Vibrio species in shellfish and water samples collected from the Atlantic coastline of south-east Nigeria. J Health Popul Nutr. 2013;31(3):314.

    Google Scholar 

  29. Velazquez-Roman J, León-Sicairos N, Hernandez-Diaz LDJ, Canizalez-Roman A. Pandemic Vibrio parahaemolyticus O3: K6 on the American continent. Front Cell Infect Microbiol. 2014;3:110.

    Article  Google Scholar 

  30. Epstein PR, Colwell RR, Ford TE. Marine ecosystems. Lancet. 1993;342(8881):1216–9.

    Article  CAS  Google Scholar 

  31. McCarthy SA, Khambaty FM. International dissemination of epidemic Vibrio cholerae by cargo ship ballast and other nonpotable waters. Appl Environ Microbiol. 1994;60(7):2597–601.

    Article  CAS  Google Scholar 

  32. Nandi B, Nandy RK, Mukhopadhyay S, Nair GB, Shimada T, Ghose AC. Rapid method for species-specific identification ofVibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. J Clin Microbiol. 2000;38(11):4145–51.

    Article  CAS  Google Scholar 

  33. Taherkhani R, Farshadpour F, Makvandi M, Hamidifard M, Esmailizadeh M, Ahmadi B, et al. Determination of cytomegalovirus prevalence and glycoprotein B genotypes among ulcerative colitis patients in Ahvaz, Iran. Jundishapur J Microbiol. 2015;8(2):e17458.

  34. Abia ALK, Ubomba-Jaswa E, Momba MNB. Riverbed sediments as reservoirs of multiple vibrio cholerae virulence-associated genes: a potential trigger for cholera outbreaks in developing countries. J Environ Public Health. 2017;2017:5646480.

    Article  Google Scholar 

  35. Tajbakhsh E, Khamesipour F, Ranjbar R, Ugwu IC. Prevalence of class 1 and 2 integrons in multi-drug resistant Escherichia coli isolated from aquaculture water in Chaharmahal Va Bakhtiari province, Iran. Ann Clin Microbiol Antimicrob. 2015;14(1):1–5.

    Article  Google Scholar 

  36. Besser TE, Shaikh N, Holt NJ, Tarr PI, Konkel ME, Malik-Kale P, et al. Greater diversity of Shiga toxin-encoding bacteriophage insertion sites among Escherichia coli O157: H7 isolates from cattle than in those from humans. Appl Environ Microbiol. 2007;73(3):671–9.

    Article  CAS  Google Scholar 

  37. Huq A, Haley BJ, Taviani E, Chen A, Hasan NA, Colwell RR. Detection, isolation, and identification of Vibrio cholerae from the environment. Curr Protoc Microbiol 2012;26(1):6A. 5.1-6A. 5.51.

  38. Russo P, Botticella G, Capozzi V, Massa S, Spano G, Beneduce L. A fast, reliable, and sensitive method for detection and quantification of Listeria monocytogenes and Escherichia coli O157: H7 in ready-to-eatfresh-cut products by MPN-qPCR. BioMed Res Int. 2014;2014:608296.

    Article  Google Scholar 

  39. Elizaquível P, Sánchez G, Aznar R. Quantitative detection of viable foodborne E. coli O157: H7, Listeria monocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR. Food Control. 2012;25(2):704–8.

    Article  Google Scholar 

  40. Kotzekidou P. Survey of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157: H7 in raw ingredients and ready-to-eat products by commercial real-time PCR kits. Food Microbiol. 2013;35(2):86–91.

    Article  CAS  Google Scholar 

  41. Maheshwari M, Krishnaiah N, Ramana D. Evaluation of polymerase chain reaction for the detection of vibrio cholerae in contaminants. Ann Biol Res. 2011;2(4):212–7.

    CAS  Google Scholar 

  42. Van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev. 1994;7(2):174–84.

    Article  Google Scholar 

  43. Lv B, Cui Y, Tian W, Li J, Xie B, Yin F. Abundances and profiles of antibiotic resistance genes as well as co-occurrences with human bacterial pathogens in ship ballast tank sediments from a shipyard in Jiangsu Province, China. Ecotoxicol Environ Saf. 2018;157:169–75.

    Article  CAS  Google Scholar 

  44. Aguirre-Macedo ML, Vidal-Martinez VM, Herrera-Silveira JA, Valdés-Lozano DS, Herrera-Rodríguez M, Olvera-Novoa MA. Ballast water as a vector of coral pathogens in the Gulf of Mexico: The case of the Cayo Arcas coral reef. Mar Pollut Bull. 2008;56(9):1570–7.

    Article  CAS  Google Scholar 

  45. Pereira NN, Botter RC, Folena RD, Pereira JPFN, da Cunha AC. Ballast water: A threat to the Amazon Basin. Mar Pollut Bull. 2014;84(1–2):330–8.

    Article  CAS  Google Scholar 

  46. Seiden JM, Way C, Rivkin RB. Microbial hitchhikers: dynamics of bacterial populations in ballast water during a trans-Pacific voyage of a bulk carrier. Aquat Invasions. 2010;5(1):13–22.

    Article  Google Scholar 

  47. Steichen JL, Schulze A, Brinkmeyer R, Quigg A. All aboard! A biological survey of ballast water onboard vessels spanning the North Atlantic Ocean. Mar Pollut Bull. 2014;87(1–2):201–10.

    Article  CAS  Google Scholar 

  48. Buzoleva L, Letyagina A, Zvyagincev A, Kashin I. Study of microorganisms coming into the port of Vladivostok with ballast water of ships. Rus J Biol Invasions. 2012;3(2):92–100.

    Article  Google Scholar 

  49. Mary P, Chihib N, Charafeddine O, Defives C, Hornez J. Starvation survival and viable but nonculturable states in Aeromonas hydrophila. Microb Ecol. 2002;43:250–8.

    Article  CAS  Google Scholar 

  50. Ryan ET, Hill DR, Solomon T, Endy TP, Aronson N. Hunter’s tropical medicine and emerging infectious diseases e-book. Amsterdam: Elsevier Health Sciences; 2019.

  51. Secretariat I. Guidelines for approval of ballast water management systems (G8). London: International Maritime Organization; 2008.

Download references

Acknowledgements

The authors are grateful to the Bushehr University of Medical Sciences for their financial support (Grant no. 4101) and the laboratory staff of the Environmental Health Engineering Department for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Dobaradaran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, F., Taherkhani, R., Dobaradaran, S. et al. Molecular detection of E. coli and Vibrio cholerae in ballast water of commercial ships: a primary study along the Persian Gulf. J Environ Health Sci Engineer 19, 457–463 (2021). https://doi.org/10.1007/s40201-021-00618-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00618-9

Keywords

Navigation