Skip to main content
Log in

Impact of essential metals on insulin sensitivity and fetuin in obesity-related type 2 diabetes pathogenesis

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Essential metals may be crucial in obesity and type 2 diabetes (T2DM); diabesity pathogenesis and consequences. This study aimed to determine the metal levels in obese and non-obese patients with and without T2DM and their relationships with fetuin-A(Fet-A) levels, insulin sensitivity, and insulin resistance.

Methods

A total of 314 participants were enrolled, with 160 newly diagnosed T2DM patients and 154 non-T2DM subjects categorized into diabetic obese (n = 57), diabetic non-obese (n = 103), non-diabetic obese (n = 48), and non-diabetic non-obese (n = 106) subgroups. Fet-A, insulin sensitivity (QUCKI)/resistance (HOMA-IR), fasting glucose, and body mass index (BMI) were assessed. The essential metals were measured using inductively coupled plasma mass spectroscopy (ICP-MS).

Results

Fet-A levels were 3-fold higher (1391.4 ± 839.8 ng/ml) in T2DM patients than in non-T2DM (2165.6 ± 651.9 vs. 424.3 ± 219.1 ng/ml, p < 0.0001). Fet-A levels were 2.3-fold higher in the diabetic obese group than in the diabetic non-obese group (p < 0.0001). Fet-A levels were 2.0-fold higher in the diabetic non-obese group than in the non-diabetic obese group (p < 0.0001). Fet-A levels were positively correlated with insulin resistance (HOMA-IR) (r = 0.34, p < 0.0001) and negatively correlated with insulin sensitivity (QUIKI) (r = −0.41, p < 0.0001).

Cu, Se, Zn, and Fe levels were significantly lower in diabetic patients than in non-diabetic patients (p < 0.05). Se and Zn were significantly correlated with Fet-A (r = −0.41, p = 0.049 and r = −0.42, p = 0.001, respectively). Se and Zn were also correlated with insulin resistance (HOMA-IR) (r = −0.45, p = 0.049 and r = −0.36, p = 0.012, respectively) and insulin sensitivity (QUIKI) (r = 0.49, p = 0.042 and r = 0.30, p = 0.003, respectively). Similarly, Fe was negatively correlated with insulin levels (r = −0.33, p = 0.04) and insulin sensitivity (r = −0.34, p = 0.30). However, Mn was significantly correlated with Fet-A (r = 0.37, p = 0.001) and insulin resistance/sensitivity (r = 0.24, p = 0.026 and r = −0.24, p = 0.041) respectively in the diabetic obese group. Mg was an independent predictor of diabesity.

Conclusions

Mg play a significant role in obesity-related T2DM pathogenesis and complications via Fet-A, insulin sensitivity, and resistance modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ozougwu JC, Obimba KC, Belonwu CD, Unakalamba CB. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol. 2013;4:46–57. https://doi.org/10.5897/JPAP2013.0001.

    Article  CAS  Google Scholar 

  2. Syed Ikmal SIQ, Zaman Huri H, Vethakkan SR, Wan Ahmad WA. Potential biomarkers of insulin resistance and atherosclerosis in type 2 diabetes mellitus patients with coronary artery disease. Int J Endocrinol. 2013:11. https://doi.org/10.1155/2013/698567.

  3. Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta. 2014;1840:2709–29. https://doi.org/10.1016/j.bbagen.2014.05.017.

    Article  CAS  PubMed  Google Scholar 

  4. VJ, Leon MA, Goustin AS. Alpha2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor. Mol Cell Endocrinol. 2000;164:87–98.

    Article  Google Scholar 

  5. Stefan N, Fritsche A, Weikert C, Boeing H, Joost H-G, Häring H-U, et al. Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes. 2008;57:2762–7. https://doi.org/10.2337/db08-0538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shidfar F, Zarrati M, Khamseh ME, Haghighat N, Rostami A, Zolfaghari H. Relationship between serum levels of fetuin-A with apo-A1, apo-B100, body composition and insulin resistance in patients with type 2 diabetes. Med J Islam Repub Iran. 2014;28:100.

    PubMed  PubMed Central  Google Scholar 

  7. Khalil H, Al-kuobaili F. Elevated fetuin - A level associated with an Atherogenic lipid profile in type 2 diabetes. Int J Pharm Sci Rev Res. 2013;21:266–9.

    CAS  Google Scholar 

  8. El-Deeb TS, Bakkar SM, Eltoony L, Zakhary MM, Kamel AA, Nafee AM, Hetta HF. The adipokine chemerin and fetuin-A serum levels in type 2 diabetes mellitus: relation to obesity and inflammatory markers. Egypt J Immunol. 2018;25(1):191–202.

    PubMed  Google Scholar 

  9. Mooradian AD, Morley JE. Micronutrient status in diabetes mellitus. Am J Clin Nutr. 1987;45(5):877–95.

    Article  CAS  PubMed  Google Scholar 

  10. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and -cell dysfunction? Diabetes. 2003;52(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  11. Pérez-Matute P, Zulet MA, Martínez JA. Reactive species and diabetes: counteracting oxidative stress to improve health. Curr Opin Pharmacol. 2009;9(6):771–9.

    Article  PubMed  Google Scholar 

  12. Taylor C. Zinc, the pancreas, and diabetes: insights from rodent studies and future directions. Biometals. 2005;18(4):305–12.

    Article  CAS  PubMed  Google Scholar 

  13. Wijesekara N, Chimienti F, Wheeler MB. Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab. 2009;11:202–14.

    Article  CAS  PubMed  Google Scholar 

  14. Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17(3):329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hansen AF, Simić A, Åsvold BO, Romundstad PR, Midthjell K, Syversen T et al. Trace elements in early phase type 2 diabetes mellitus—a population-based study. The HUNT study in Norway. J Trace Elem Med Biol. 2017;40:46–53.

  16. Chen H, Tan C. Prediction of type-2 diabetes based on several element levels in blood and chemometrics. Biol Trace Elem Res. 2012;147(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  17. Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients. 2020;12(6):1864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. International diabetes federation. The IDF diabetes Atlas, 6th ed., 2013. Available online: http://www.idf.org/atlasmap/atlasmap. Accessed 5 May 2014.

  19. Feller S, Boeing H, Pischon T. Body mass index, waist circumference, and the risk of type 2 diabetes mellitus: implications for routine clinical practice. Dtsch Arztebl Int. 2010;107(26):470.

    PubMed  PubMed Central  Google Scholar 

  20. Salgado AL, Carvalho L, Oliveira AC, Santos VN, Vieira JG, Parise ER. Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arq Gastroenterol. 2010;47(2):165–9. https://doi.org/10.1590/S0004-28032010000200009.

    Article  PubMed  Google Scholar 

  21. Vanhala P, Vanhala M, Kumpusalo E, Keinanen-Kiukaanniemi S. The quantitative insulin sensitivity check index QUICKI predicts the onset of type 2 diabetes better than fasting plasma insulin in obese subjects: a 5-year follow-up study. J Clin Endocrinol & Metab. 2002;87(12):5834–7. https://doi.org/10.1210/jc.2002-020591.

    Article  CAS  Google Scholar 

  22. Misra A, Singhal N, Sivakumar B, Bhagat N, Jaiswal A, Khurana L. Nutrition transition in India: secular trends in dietary intake and their relationship to diet related non-communicable diseases. J Diabetes. 2011;3:278–92. https://doi.org/10.1111/j.1753-0407.2011.00139.x.

    Article  PubMed  Google Scholar 

  23. Misra A, Shrivastava U. Obesity and dyslipidemia in south Asians. Nutrients. 2013;5:2708–33. https://doi.org/10.3390/nu5072708.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bourebaba L, Marycz K. Pathophysiological implication of fetuin-A glycoprotein in the development of metabolic disorders: a concise review. J Clin Med. 2019;8(12):2033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boren J, Taskinen MR, Olofsson SO, Levin M. Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med. 2013;274(1):25–40.

    Article  CAS  PubMed  Google Scholar 

  26. Cai MM, Smith ER, Holt SG. The role of fetuin-A in mineral trafficking and deposition. BoneKEy reports. 2015:4.

  27. Kovářová M, Kalbacher H, Peter A, Häring HU, Didangelos T, Stefan N, Birkenfeld A, Schleicher E, Kantartzis K. Detection and characterization of phosphorylation, glycosylation, and fatty acid bound to fetuin A in human blood. J Clin Med. 2021;10(3):411.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sun Q, Cornelis MC, Manson JE, Hu FB. Plasma levels of fetuin-A and hepatic enzymes and risk of type 2 diabetes in women in the US. Diabetes. 2013;62:49–55. https://doi.org/10.2337/db12-0372.

    Article  CAS  PubMed  Google Scholar 

  29. Ismail NA, Ragab S, El Dayem SMA, ElBaky AA, Salah N, Hamed M. Fetuin-A levels in obesity: differences in relation to metabolic syndrome and correlation with clinical and laboratory variables. Arch Med Sci. 2012;8:826–33. https://doi.org/10.5114/aoms.2012.31616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chaudhary DP. Magnesium deficiency in type 2 diabetes. In Magnesium in Human Health and Disease 2013 pp. 119–126. Humana Press, Totowa. https://doi.org/10.1007/978-1-62703-044-1_7.

  31. Hua H, Gonzales J, Rude RK. Magnesium transport induced ex vivo by a pharmacological dose of insulin is impaired in non-insulin-dependent diabetes mellitus. Magnes-Res. 1995;8(4):359–66.

    CAS  PubMed  Google Scholar 

  32. Ekmekcioglu C, Prohaska C, Pomazal K, Steffan I, Schernthaner G, Marktl W. Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biol Trace Elem Res. 2001;79(3):205–19.

    Article  CAS  PubMed  Google Scholar 

  33. Fernández-Real JM, Lopez-Bermejo A, Ricart W. Iron stores, blood donation, and insulin sensitivity and secretion. Clin Chem. 2005;51(7):1201–5. https://doi.org/10.1373/clinchem.2004.046847.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang R, Manson JE, Meigs JB, Ma J, Rifai N, Hu FB. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. Jama. 2004;291(6):711–7. https://doi.org/10.1001/jama.291.6.711.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Quraishy S, Dkhil MA, Moneim AE. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int J Nanomedicine. 2015;10:6741. https://doi.org/10.2147/IJN.S91377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyer JA, Spence DM. A perspective on the role of metals in diabetes: past findings and possible future directions. Metallomics. 2009;1(1):32–41. https://doi.org/10.1039/b817203j.

    Article  CAS  Google Scholar 

  37. Dewitte K, Dhondt A, Giri M, StOckl D, Rottiers R, Lameire N, et al. Differences in serum ionized and total magnesium values during chronic renal failure between non-diabetic and diabetic patients: a cross-sectional study. Diabetes Care. 2004;27(10):2503–5. https://doi.org/10.2337/diacare.27.10.2503.

    Article  CAS  PubMed  Google Scholar 

  38. De Valk HW, Verkaaik R, Van Rijn HJ, Geerdink RA, Struyvenberg A. Oral magnesium supplementation in insulin-requiring type 2 diabetic patients. Diabet Med. 1998;15(6):503–7. https://doi.org/10.1002/(SICI)1096-9136(199806)15:6<503::AID-DIA596>3.0.CO;2-M.

  39. Rodríguez-Morán M, Guerrero-Romero F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care. 2003;26(4):1147–52. https://doi.org/10.2337/diacare.26.4.1147.

    Article  PubMed  Google Scholar 

  40. Sprietsma JE, Schuitemaker GE. Diabetes can be prevented by reducing insulin production. Med Hypotheses. 1994;42(1):15–23. https://doi.org/10.1016/0306-9877(94)90029-9.

    Article  CAS  PubMed  Google Scholar 

  41. Dzięgielewska-Gęsiak S, Wysocka E, Michalak S, Nowakowska-Zajdel E, Kokot T, Muc-Wierzgoń M. Role of lipid peroxidation products, plasma total antioxidant status, and cu-, Zn-superoxide dismutase activity as biomarkers of oxidative stress in elderly prediabetics. Oxidative Med Cell Longev 2014; 2014. https://doi.org/10.1155/2014/987303.

  42. Beshgetoor D, Hambidge M. Clinical conditions altering copper metabolism in humans. Am J Clin Nutr. 1998;67(5):1017S–21S. https://doi.org/10.1093/ajcn/67.5.1017S.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge an Intramural Research Grant (IEC-24/18) to Dr. Vandana Tiwari from Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

Anumesh Pathak- Manuscript drafting and writing, data analysis, tables and graphs preparation.

Vandana Tiwari: conceptualization, funding acquisition, execution of the experiment, validation of data, and draft editing.

Manish Raj Kulshrestha- Manuscript preparation and editing.

Shivani Singh- Sample collection & data collection, help in tables preparation.

Shefali Singh- Sample collection & enrolled patients.

Vikram Singh- Clinical history & patient details.

Corresponding author

Correspondence to Vandana Tiwari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, A.K., Tiwari, V., Kulshrestha, M.R. et al. Impact of essential metals on insulin sensitivity and fetuin in obesity-related type 2 diabetes pathogenesis. J Diabetes Metab Disord 22, 703–712 (2023). https://doi.org/10.1007/s40200-023-01193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-023-01193-6

Keywords

Navigation