Skip to main content
Log in

EBSD Study of Microstructural and Textural Changes of Hot-Rolled Ti–6Al–4V Sheet After Annealing at 800 °C

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this paper, electron backscatter diffraction and various other characterization and analysis techniques including X-ray diffraction, electron channeling contrast imaging and energy-dispersive spectrometry were jointly employed to investigate microstructural and textural changes of a hot-rolled Ti–6Al–4V (TC4) sheet after annealing at 800 °C for 5 h. In addition, the hardness variation induced by the annealing treatment is rationalized based on revealed microstructural and textural characteristics. Results show that the TC4 sheet presents a typical dual-phase (α + β) microstructure, with α-Ti as the major phase and short-rod-shaped β-Ti (minority) uniformly distributed throughout the α matrix. Most of α grains correspond to the un-recrystallized structures with a typical rolling texture (c//TD and <11–20>//ND) and dense low angle boundaries (LABs). After the annealing, the stored energy in the as-received specimen is significantly reduced, along with greatly decreased LABs density. Also, the annealing allows recrystallization and grain growth to occur, leading to weakening of the initial texture. Furthermore, the water quenching immediately after the annealing triggers martensitic transformation, which makes the high-temperature β phases be transformed into submicron α plates. The hardness of the annealed specimen is 320.5 HV, lower than that (367.0 HV) of the as-received specimen, which could be attributed to reduced LABs, grain growth and weakened texture. Nevertheless, the hardening effect from the fine martensitic plates could help to suppress a drastic hardness drop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Singh, H. Pungotra, N.S. Kalsi, Mater. Today Proc. 4, 8971 (2017)

    Article  Google Scholar 

  2. D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013)

    Article  Google Scholar 

  3. R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996)

    Article  Google Scholar 

  4. S. Dai, Y. Wang, F. Chen, Mater. Charact. 104, 16 (2015)

    Article  Google Scholar 

  5. M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Adv. Eng. Mater. 5, 419 (2003)

    Article  Google Scholar 

  6. P. Guo, Y. Zhao, W. Zeng, Rare Met. Mater. Eng. 44, 277 (2015)

    Article  Google Scholar 

  7. F.J. Gil, M.P. Ginebra, J.M. Manero, J.A. Planell, J. Alloys Compd. 329, 142 (2001)

    Article  Google Scholar 

  8. L. Zeng, T.R. Bieler, Mater. Sci. Eng. A 392, 403 (2005)

    Article  Google Scholar 

  9. T. Fang, W. Wang, Mater. Chem. Phys. 56, 35 (1998)

    Article  Google Scholar 

  10. P. Guo, Y. Zhao, W. Zeng, Q. Hong, Mater. Sci. Eng. A 563, 106 (2013)

    Article  Google Scholar 

  11. G. Lütjering, Mater. Sci. Eng. A 243, 32 (1998)

    Article  Google Scholar 

  12. S. Sun, Y. Zong, D. Shan, B. Guo, Trans. Nonferr. Met. Soc. China 20, 2181 (2010)

    Article  Google Scholar 

  13. X. Peng, H. Guo, T. Wang, Z. Yao, Mater. Sci. Eng. A 533, 55 (2012)

    Article  Google Scholar 

  14. S. Wang, X. Wu, Mater. Des. 36, 663 (2012)

    Article  Google Scholar 

  15. N. Bozzolo, N. Dewobroto, T. Grosdidier, P. Barbéris, F. Wagner, Mater. Sci. Forum 467–470, 441 (2004)

    Article  Google Scholar 

  16. N. Kherrouba, M. Bouabdallah, R. Badji, D. Carron, M. Amir, Mater. Chem. Phys. 181, 462 (2016)

    Article  Google Scholar 

  17. M. Yang, G. Wang, T. Liu, W.J. Zhao, D.S. Xu, Acta Metall. Sin. (Engl. Lett.) 30, 745 (2017)

    Article  Google Scholar 

  18. T. Karthikeyan, A. Dasgupta, R. Khatirkar, S. Saroja, I. Samajdar, M. Vijayalakshmi, Mater. Sci. Eng. A 528, 549 (2010)

    Article  Google Scholar 

  19. G.C. Obasi, S. Birosca, J. Quinta Da Fonseca, M. Preuss, Acta Mater. 60, 1048 (2012)

    Article  Google Scholar 

  20. S.A. Souza, R.B. Manicardi, P.L. Ferrandini, C.R.M. Afonso, A.J. Ramirez, R. Caram, J. Alloys Compd. 504, 330 (2010)

    Article  Google Scholar 

  21. T. Ahmed, H.J. Rack, Mater. Sci. Eng. A 243, 206 (1998)

    Article  Google Scholar 

  22. Y. Ning, B. Xie, H. Liang, H. Li, X. Yang, H. Guo, Mater. Des. 71, 68 (2015)

    Article  Google Scholar 

  23. H. Liu, K. Nakata, J. Zhang, N. Yamamoto, J. Liao, Mater. Charact. 65, 1 (2012)

    Article  Google Scholar 

  24. S. Malinov, W. Sha, Z. Guo, C. Tang, A. Long, Mater. Charact. 48, 279 (2002)

    Article  Google Scholar 

  25. A.C. Lewis, S. Wright, JOM 65, 1221 (2013)

    Article  Google Scholar 

  26. L. Chai, S. Wang, B. Luan, Q. Liu, Sci. China Technol. Sci. 59, 673 (2016)

    Article  Google Scholar 

  27. Y.B. Chun, M. Battaini, C.H.J. Davies, S.K. Hwang, Metall. Mater. Trans. A 41, 3473 (2010)

    Article  Google Scholar 

  28. G.S. Dyakonov, S. Mironov, S.V. Zherebtsov, S.P. Malysheva, G.A. Salishchev, A.A. Salem, S.L. Semiatin, Mater. Sci. Eng. A 607, 145 (2014)

    Article  Google Scholar 

  29. F. Bridier, D.L. McDowell, P. Villechaise, J. Mendez, Int. J. Plast. 25, 1066 (2009)

    Article  Google Scholar 

  30. M. Zhang, F. Bridier, P. Villechaise, J. Mendez, D.L. McDowell, Acta Mater. 58, 1087 (2010)

    Article  Google Scholar 

  31. S. Wronski, M. Jedrychowski, J. Tarasiuk, B. Bacroix, Mater. Sci. Eng. A 692, 113 (2017)

    Article  Google Scholar 

  32. Y. Wang, W. He, N. Liu, A. Chapuis, B. Luan, Q. Liu, Mater. Charact. 136, 1 (2018)

    Article  Google Scholar 

  33. L. Chai, H. Wu, Z. Zheng, H. Guan, H. Pan, N. Guo, B. Song, J. Alloys Compd. 741, 116 (2018)

    Article  Google Scholar 

  34. P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, K. Xia, Scr. Mater. 66, 785 (2012)

    Article  Google Scholar 

  35. F. Guo, H. Yu, C. Wu, Y. Xin, C. He, Q. Liu, Sci. Rep. 7, 8647 (2017)

    Article  Google Scholar 

  36. X. Gao, L. Zhang, J. Liu, J. Zhang, Mater. Sci. Eng. A 559, 14 (2013)

    Article  Google Scholar 

  37. Z. Tarzimoghadam, S. Sandlöbes, K.G. Pradeep, D. Raabe, Acta Mater. 97, 291 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental and Cutting-Edge Research Plan of Chongqing (cstc2017jcyjAX0114 and cstc2015jcyjBX0048), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1600924) and the Education Reform Project for Professional Degree Graduate of Chongqing University of Technology (ZSSD103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Jiang Chai, Yan Zhi or Ning Guo.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, JY., Chai, LJ., Wu, H. et al. EBSD Study of Microstructural and Textural Changes of Hot-Rolled Ti–6Al–4V Sheet After Annealing at 800 °C. Acta Metall. Sin. (Engl. Lett.) 31, 1215–1223 (2018). https://doi.org/10.1007/s40195-018-0768-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0768-7

Keywords

Navigation