Skip to main content
Log in

Control of Secondary Phases by Solution Treatment in a N-Alloyed High-Mn Cryogenic Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The secondary phases of the steels have significant effects on the microstructure and mechanical properties, making controlling these secondary phases important. The control of MnS inclusions and AlN precipitates in a N-alloyed high-Mn twin-induced plastic cryogenic steel via solution treatment was investigated with several different techniques including microstructural characterization, 298 K tensile testing, and 77 K impact testing. The solutionizing temperature (ST) increased from 1323 to 1573 K, where the elongated MnS inclusions and large-sized AlN precipitates became spheroidized and dissolved. The aspect ratio of the MnS inclusions decreased as the ST increased and the number density increased. The impact toughness of the steels showed anisotropy and low impact energy values, due to the elongated MnS inclusions and large-sized AIN precipitates. The anisotropy was eliminated by spheroidizing the MnS inclusions. The impact energy was improved by dissolving the large-sized AlN precipitates during the solution treatment. The austenite grain size increased when the dissolution of the AlN precipitate increased, but the effect of the grain size on the yield strength, toughness, and the strength–ductility balance was weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.S. Sohn, S. Hong, J. Lee, B.C. Suh, S.K. Kim, B.J. Lee, Acta Mater. 100, 39 (2015)

    Article  Google Scholar 

  2. L.Q. Chen, Y. Zhao, X.M. Qin, Acta Metall. Sin. (Engl. Lett.) 26, 1 (2013)

    Article  Google Scholar 

  3. W.W. Song, T. Ingendahl, W. Bleck, Acta Metall. Sin. (Engl. Lett.) 27, 546 (2014)

    Article  Google Scholar 

  4. J.S. Kim, J.B. Jeon, J.E. Jung, K.K. Um, Y.W. Chang, Met. Mater. Int. 20, 41 (2014)

    Article  Google Scholar 

  5. R. Fu, L. Qiu, T. Wang, C. Wang, Mater. Charact. 55, 355 (2005)

    Article  Google Scholar 

  6. E.D. Marquardt, J.P. Le, R. Radebaugh, Kluwer Cryocoolers. 11, 681 (2002)

    Google Scholar 

  7. D. Jeong, S. Lee, I. Seo, J. Yoo, S. Kim, Met. Mater. Int. 21, 22 (2015)

    Article  Google Scholar 

  8. D. Jeong, S. Lee, I. Seo, J. Yoo, S. Kim, Met. Mater. Int. 21, 14 (2015)

    Article  Google Scholar 

  9. D.H. Jeong, S.G. Lee, W.K. Jang, J.K. Choi, Y.J. Kim, Metall. Mater. Trans. A 44, 4601 (2013)

    Article  Google Scholar 

  10. J. Frehser, C. Kubisch, Berg und Hüttenmännische Monatshefte. 108, 369 (1963)

    Google Scholar 

  11. K.J. Irvine, T. Gladman, F.B. Pickering, J. Iron Steel Inst. 207, 1017 (1969)

    Google Scholar 

  12. K. Frisk, Metall. Trans. A 21, 2477 (1990)

    Article  Google Scholar 

  13. N. Nakamura, S. Takaki, ISIJ Int. 36, 922 (1996)

    Article  Google Scholar 

  14. T. Tsuchiyama, S. Takaki, H. Ito, K. Kataoka, Metall. Mater. Trans. A 34, 2591 (2003)

    Article  Google Scholar 

  15. Q.L. Yong, Secondary Phases in Steels (Metallurgical Industry Press, Beijing, 2006), pp. 12–17

    Google Scholar 

  16. T.J. Baker, J.A. Charles, J. Iron Steel Inst. 210, 680 (1972)

    Google Scholar 

  17. W.M. Garrison, A.L. Wojcieszynski, Mater. Sci. Eng. A 464, 321 (2007)

    Article  Google Scholar 

  18. A. Ghosh, P. Modak, R. Dutta, D. Chakrabarti, Mater. Sci. Eng. A 654, 298 (2016)

    Article  Google Scholar 

  19. N. Cyril, A. Fatemi, B. Cryderman, SAE Int. J. Mater. Manuf. 1, 218 (2008)

    Article  Google Scholar 

  20. C. Temmel, N.G. Ingesten, B. Karlsson, Metall. Mater. Trans. A 37, 2995 (2006)

    Article  Google Scholar 

  21. F.G. Wilson, T. Gladman, Int. Mater. Rev. 33, 221 (1988)

    Article  Google Scholar 

  22. T.L. Anderson, Fracture Mechanics Fundamentals and Applications (CRC Press, Boca Raton, 2017), pp. 338–350

    Google Scholar 

  23. N. Yuki, H. Shibata, T. Emi, ISIJ Int. 38, 317 (1998)

    Article  Google Scholar 

  24. K. Oikawa, H. Ohtani, K. Ishida, T. Nishizawa, ISIJ Int. 35, 402 (1995)

    Article  Google Scholar 

  25. X.J. Shao, X.H. Wang, C.X. Ji, H.B. Li, Y. Cui, G.S. Zhu, Int. J. Miner. Metall. Mater. 22, 483 (2015)

    Article  Google Scholar 

  26. N. Tsunekage, H. Tsubakino, Mater. Sci. Technol. 18, 964 (2002)

    Article  Google Scholar 

  27. Y.V. Murty, T.Z. Kattamis, R. Mehrabian, M.C. Flemings, Metall. Trans. A 8, 1275 (1977)

    Article  Google Scholar 

  28. D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials (CRC Press, Boca Raton, 2017), pp. 65–67

    Google Scholar 

  29. X.J. Shao, X.H. Wang, M. Jiang, W.J. Wang, F.X. Huang, ISIJ Int. 51, 1995 (2011)

    Article  Google Scholar 

  30. D. Barbier, N. Gey, S. Allain, N. Bozzoloa, M. Humbert, Mater. Sci. Eng. A 500, 196 (2009)

    Article  Google Scholar 

  31. A.A. Benzerga, J. Besson, A. Pineau, Acta Mater. 52, 4623 (2004)

    Article  Google Scholar 

  32. X.J. Wang, X.J. Sun, C. Song, H. Chen, S. Tong, W. Han, P. Feng, Mater. Charact. 135, 287 (2018)

    Article  Google Scholar 

  33. X.J. Wang, X.J. Sun, C. Song, H. Chen, W. Han, P. Feng, Mater. Sci. Eng. A 698, 110 (2017)

    Article  Google Scholar 

  34. H. Gwon, J.K. Kim, S. Shin, L. Cho, B.C. De Cooman, Mater. Sci. Eng. A 696, 416 (2017)

    Article  Google Scholar 

  35. L. Mosecker, D.T. Pierce, A. Schwedt, Mater. Sci. Eng. A 642, 71 (2015)

    Article  Google Scholar 

  36. M. Ghasri-Khouzani, J.R. McDermid, Mater. Sci. Eng. A 621, 118 (2015)

    Article  Google Scholar 

  37. J.H. Kang, T. Ingendahl, J. von Appen, R. Dronskowski, W. Bleck, Mater. Sci. Eng. A 614, 122 (2014)

    Article  Google Scholar 

  38. O. Bouaziz, S. Allain, C. Scott, Scr. Mater. 58, 484 (2008)

    Article  Google Scholar 

  39. L.A. NorstrÖm, Met. Sci. 11, 208 (1977)

    Article  Google Scholar 

  40. R. Varin, K. Kurzydlowski, Mater. Sci. Eng. A 101, 221 (1988)

    Google Scholar 

  41. E. Werner, Mater. Sci. Eng. A 101, 93 (1988)

    Google Scholar 

  42. K. Kako, S. Takaki, K. Abiko, Mater. Trans. 43, 147 (2002)

    Article  Google Scholar 

  43. A. Di Schino, J. Kenny, Mater. Lett. 57, 1830 (2003)

    Article  Google Scholar 

  44. J.H. Kang, S. Duan, S.J. Kim, W. Bleck, Metall. Mater. Trans. A 47, 1918 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China (Grant No. 2017YFB0305101). Thanks for Dr. E. X. Pu, Dr. Y. D. Gu, and Dr. S. T. Zhou for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Jiang Wang or Xin-Jun Sun.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XJ., Sun, XJ., Song, C. et al. Control of Secondary Phases by Solution Treatment in a N-Alloyed High-Mn Cryogenic Steel. Acta Metall. Sin. (Engl. Lett.) 31, 1059–1072 (2018). https://doi.org/10.1007/s40195-018-0759-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0759-8

Keywords

Navigation