Skip to main content
Log in

Facile Synthesis, Characterization of Flower-Like Vanadium Pentoxide Powders and Their Photocatalytic Behavior

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this paper, V2O5 sol was firstly prepared using vanadyl sulfate as a vanadium source by modified sol–gel method at room temperature. Then flower-like V2O5 powders were prepared by coagulating as-prepared sol with anhydrous ethanol and subsequent annealing crystallization. The X-ray diffraction analysis indicated that V2O5 powders exhibited orthorhombic crystal structure after annealing at 450 °C. The experimental data obtained from both field emission scanning electron microscopy and high-resolution transmission electron microscopy identified that V2O5 powders were approximately flower-like in shape and about 5 μm in size. Besides, the Brunauer–Emmett–Teller specific surface area of flower-like V2O5 powders was 24.25 m2/g. According to Uv–Vis spectroscopy, the degradation rate of toluidine blue O (TBO) on as-prepared flower-like V2O5 powders during 10 h of visible light irradiation with an intensity of 15.4 mW/m2 was 88%, which was faster than those over P25 (46%) as a comparison. In addition, the mineralization process of TBO was investigated, which primarily consisted of demethylation and ring-opening oxidation processes, and confirmed by liquid chromatograph-mass spectrometry. The precipitation–oxidation–peptization, coagulation, and crystallization processes were proposed as the formation mechanism for the preparation of flower-like V2O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.C. Wang, J.H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L.Z. Wang, J. Mater. Sci. Technol. 33, 1 (2017)

    Article  Google Scholar 

  2. W.G. Liu, Y.M. Xu, W. Zhou, X.F. Zhang, X.L. Cheng, H. Zhao, S. Gao, L.H. Huo, J. Mater. Sci. Technol. 33, 39 (2017)

    Article  Google Scholar 

  3. L.X. Zheng, S.C. Han, H. Liu, P.P. Yu, X.S. Fang, Small 12, 1527 (2016)

    Article  Google Scholar 

  4. J.J. Sun, X.Y. Li, Q.D. Zhao, J. Ke, D.K. Zhang, J. Phys. Chem. C 118, 10113 (2014)

    Article  Google Scholar 

  5. M. Chen, J.Z. Ma, B. Zhang, G.Z. He, Y.B. Li, C.B. Zhang, H. He, Appl. Catal. B-Environ. 207, 397 (2017)

    Article  Google Scholar 

  6. A. Ali, S. Ambreen, R. Javed, S. Tabassum, I. Ul Haq, M. Zia, Mater. Sci. Eng. C-Mater. 74, 137 (2017)

    Article  Google Scholar 

  7. C. Lu, J. Wang, A. Wang, Y. Wang, D. Meng, Z. Zhu, Mater. Lett. 186, 171 (2017)

    Article  Google Scholar 

  8. B. Liu, X. Li, Q. Zhao, J. Liu, S. Liu, S. Wang, M. Tade, J. Mater. Chem. A 3, 15163 (2015)

    Article  Google Scholar 

  9. S. Choi, M.S. Lee, D.W. Park, Curr. Appl. Phys. 14, 433 (2014)

    Article  Google Scholar 

  10. M. Epifani, S. Kaciulis, A. Mezzi, D. Altamura, C. Giannini, R. Diaz, C. Force, A. Genc, J. Arbiol, P. Siciliano, E. Comini, I. Concina, Sci. Rep. 7, 44763 (2017)

    Article  Google Scholar 

  11. R.A. Rakkesh, D. Durgalakshmi, S. Balakumar, RSC Adv. 5, 18633 (2015)

    Article  Google Scholar 

  12. X. Xie, E. Hums, J. Lu, Res. Chem. Intermed. 43, 1409 (2017)

    Article  Google Scholar 

  13. Y. Zhang, J. Zheng, Q. Wang, T. Hu, F. Tian, C. Meng, Appl. Surf. Sci. 399, 151 (2017)

    Article  Google Scholar 

  14. L.Y. Xie, P. Liu, Z.Y. Zheng, S.X. Weng, J.H. Huang, Appl. Catal. B-Environ. 184, 347 (2016)

    Article  Google Scholar 

  15. Y. Yang, F. Teng, Y.D. Kan, L.M. Yang, W.H. Gu, J. Xu, Y.X. Zhao, X. Du, M. Ren, CrystEngComm 18, 3064 (2016)

    Article  Google Scholar 

  16. A.A. Mane, M.P. Suryawanshi, J.H. Kim, A.V. Moholkar, J. Colloid Interf. Sci. 495, 53 (2017)

    Article  Google Scholar 

  17. G.P. Patil, V.S. Bagal, M.A. More, D.S. Joag, N.S. Gajbhiye, K. Dewangan, P.G. Chavan, J. Nanoelectron. Optoelectron. 12, 286 (2017)

    Article  Google Scholar 

  18. G.Q. Jia, Z.N. Deng, X. Liu, H. Jiang, C.Z. Li, Chem. Eng. J. 304, 194 (2016)

    Article  Google Scholar 

  19. T.Y. Yang, H. Yu, B.X. Xiao, Z.F. Li, M.Z. Zhang, J. Alloy. Compd. 699, 921 (2017)

    Article  Google Scholar 

  20. X.Y. Zhang, J.G. Wang, H.Y. Liu, H.Z. Liu, B.Q. Wei, Materials 10, 77 (2017)

    Article  Google Scholar 

  21. M. Toubane, R. Tala-Ighil, F. Bensouici, M. Bououdina, M. Souier, S. Liu, W. Cai, A. Iratni, Mater. Res. Express 4, 035023 (2017)

    Article  Google Scholar 

  22. J. Chen, X. Nie, H. Shi, G. Li, T. An, Chem. Eng. J. 228, 834 (2013)

    Article  Google Scholar 

  23. P. Kumar, L.H. Hu, J. Alloy. Compd. 655, 79 (2016)

    Article  Google Scholar 

  24. W. Yu, J. Wang, Z. Gou, W. Zeng, W. Guo, L. Lin, Ceram. Int. 39, 2639 (2013)

    Article  Google Scholar 

  25. C. Cao, Y. Gao, L. kang, H. Luo, CrystEngComm 12, 4048 (2010)

    Article  Google Scholar 

  26. W. Guo, T. Liu, L. Huang, H. Zhang, Q. Zhou, W. Zeng, Physica E 44, 680 (2011)

    Article  Google Scholar 

  27. X. Liu, S. Ding, T. Song, X. Jiang, X. Peng, Ceram. Int. 41, S740 (2015)

    Article  Google Scholar 

  28. V. Bondarenka, V. Jasulaitiene, R. Sereika, A. Stirk, J. Sol-Gel. Sci. Technol. 71, 385 (2014)

    Article  Google Scholar 

  29. J. Swiatowska-Mrowiecka, V. Maurice, S. Zanna, L. Klein, P. Marcus, Electrochim. Acta 52, 5644 (2007)

    Article  Google Scholar 

  30. M.H.J. Livage, C. Sanchez, Prog. Solid State Chem. 18, 259 (1988)

    Article  Google Scholar 

  31. J. Livage, Chem. Mater. 3, 578 (1991)

    Article  Google Scholar 

  32. J. Livage, Coord. Chem. Rev. 178, 999 (1998)

    Article  Google Scholar 

  33. J. Livage, B. Alonso, J. Solid State Chem. 148, 1 (1999)

    Article  Google Scholar 

  34. V. Bondarenka, S. Grebinskij, S. Mickevicius, H. Tvardauskas, S. Kaciulis, J. Alloy. Compd. 382, 239 (2004)

    Article  Google Scholar 

  35. T. Bal-Demirci, M. Sahin, E. Kondakci, M. Ozyurek, B. Ulkuseven, R. Apak, Spectrochim. Acta A 138, 866 (2015)

    Article  Google Scholar 

  36. B. Balaji, B. Balakrishnan, S. Perumalla, A.A. Karande, A.R. Chakravarty, Eur. J. Med. Chem. 92, 332 (2015)

    Article  Google Scholar 

  37. X. Xiao, C. Liu, R.P. Hu, X.X. Zuo, J.M. Nan, L.S. Li, L.S. Wang, J. Mater. Chem. 22, 22840 (2012)

    Article  Google Scholar 

  38. M. Ye, D. Zheng, M. Lv, C. Chen, C. Lin, Z. Lin, Adv. Mater. 25, 3039 (2013)

    Article  Google Scholar 

  39. Y. Wang, Z. Li, X. Sheng, Z. Zhang, J. Chem. Phys. 126, 164701 (2007)

    Article  Google Scholar 

  40. Y.N. Ko, Y.C. Kang, S.B. Park, Nanoscale 5, 8899 (2013)

    Article  Google Scholar 

  41. M. Aslam, I.M.I. Ismail, N. Salah, S. Chandrasekaran, M.T. Qamar, A. Hameed, J. Hazard. Mater. 286, 127 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the China National Key Research & Development Plan (Grant Nos. 2016YFC0700901, 2016YFC0700607) and project (BZZ14J001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Cao.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Kuang, JL., Lu, Y. et al. Facile Synthesis, Characterization of Flower-Like Vanadium Pentoxide Powders and Their Photocatalytic Behavior. Acta Metall. Sin. (Engl. Lett.) 30, 1017–1026 (2017). https://doi.org/10.1007/s40195-017-0611-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0611-6

Keywords

Navigation