Skip to main content

Advertisement

Log in

Protective Variants in Alzheimer’s Disease

  • Neurogenetics and Psychiatric Genetics (C Cruchaga and C Karch, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Over the last decade, over 40 loci have been associated with risk of Alzheimer’s disease (AD). However, most studies have either focused on identifying risk loci or performing unbiased screens without a focus on protective variation in AD. Here, we provide a review of known protective variants in AD and their putative mechanisms of action. Additionally, we recommend strategies for finding new protective variants.

Recent Findings

Recent Genome-Wide Association Studies have identified both common and rare protective variants associated with AD. These include variants in or near APP, APOE, PLCG2, MS4A, MAPT-KANSL1, RAB10, ABCA1, CCL11, SORL1, NOCT, SCL24A4-RIN3, CASS4, EPHA1, SPPL2A, and NFIC.

Summary

There are very few protective variants with functional evidence and a derived allele with a frequency below 20%. Additional fine mapping and multi-omic studies are needed to further validate and characterize known variants as well as specialized genome-wide scans to identify novel variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.

    Article  PubMed  Google Scholar 

  2. Mhatre SD, Tsai CA, Rubin AJ, James ML, Andreasson KI. Microglial malfunction: the third rail in the development of Alzheimer’s disease. Trends Neurosci. 2015;38:621–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rasmussen KL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Absolute 10-year risk of dementia by age, sex and APOE genotype: a population-based cohort study. CMAJ. 2018;190:E1033–41.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang L-S, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4,and the risk of late-onset Alzheimer disease in African Americans. JAMA. 2013;309:1483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. Nature Publishing Group. 2007;39:17–23.

    Article  CAS  Google Scholar 

  6. Yu L, Lutz MW, Wilson RS, Burns DK, Roses AD, Saunders AM, et al. APOE ε4-TOMM40 ‘523 haplotypes and the risk of Alzheimer’s disease in older Caucasian and African Americans. PLoS One. 2017;12:e0180356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. Nature Publishing Group. 2009;41:1088–93.

    Article  CAS  Google Scholar 

  8. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. Nature Publishing Group. 2011;43:429–35.

    Article  CAS  Google Scholar 

  9. Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet Nature Publishing Group. 2011;43:436–41.

    Article  CAS  Google Scholar 

  10. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA American Medical Association. 2010;303:1832–40.

    Article  CAS  Google Scholar 

  11. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. Nature Publishing Group. 2013;45:1452–8.

    Article  CAS  Google Scholar 

  12. •• Marioni R, Harris SE, McRae AF, Zhang Q, Hagenaars SP, Hill WD, et al. GWAS on family history of Alzheimer’s disease [Internet]. bioRxiv. 2018 [cited 2018 Nov 3]. p. 246223. Available from: https://www.biorxiv.org/content/early/2018/01/12/246223. Performed a meta-analysis of GWAS for clinical late-onset Alzheimer’s disease and family history of Alzheimer’s disease in a total sample size of 314,278. Identified 21 loci associated with AD—two of which are protective.

  13. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. University of Chicago Press. 1999;65:664–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cruchaga C, Del-Aguila JL, Saef B, Black K, Fernandez MV, Budde J, et al. Polygenic risk score of sporadic late-onset Alzheimer’s disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement. 2018;14:205–14.

    Article  PubMed  Google Scholar 

  15. Ghani M, Reitz C, George-Hyslop PS, Rogaeva E. Genetic complexity of early-onset Alzheimer’s disease. In: Galimberti D, Scarpini E, editors. Neurodegenerative diseases: clinical aspects, molecular genetics and biomarkers. Cham: Springer International Publishing; 2018. p. 29–50.

    Chapter  Google Scholar 

  16. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tan H. On the protective effects of gene SNPs against human cancer. EBioMedicine. 2018;33:4–5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fox M. “Evolutionary medicine” perspectives on Alzheimer’s disease: review and new directions. Ageing Res Rev. 2018;47:140–8.

    Article  PubMed  Google Scholar 

  19. Schwartz MLB, Williams MS, Murray MF. Adding protective genetic variants to clinical reporting of genomic screening results: restoring balance. JAMA. 2017;317:1527–8.

    Article  PubMed  Google Scholar 

  20. Harper AR, Nayee S, Topol EJ. Protective alleles and modifier variants in human health and disease. Nat Rev Genet. 2015;16:689–701.

    Article  CAS  PubMed  Google Scholar 

  21. •• Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Naj AC, Boland A, et al. Meta-analysis of genetic association with diagnosed Alzheimer’s disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing [Internet]. bioRxiv. 2018 [cited 2018 Nov 6]. p. 294629. Available from: https://www.biorxiv.org/content/early/2018/04/05/294629. The largest GWAS of clinically diagnosed Alzheimer’s disease to date ( n = 89,769). Identified 24 loci associated with AD—four of which are protective.

  22. Liu JZ, Erlich Y, Pickrell JK. Case-control association mapping by proxy using family history of disease. Nat Genet. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2017;49:325–31.

  23. • Jun G, Ibrahim-Verbaas CA, Vronskaya M, Lambert J-C, Chung J, Naj AC, et al. A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry. Macmillan Publishers Limited; 2016;21:108–17. Performed an APOE stratified GWAS of Alzheimer’s disease and found a locus near the tau gene to be associated with reduced risk APOE e4- participants.

  24. Jun GR, Chung J, Mez J, Barber R, Beecham GW, Bennett DA, et al. Transethnic genome-wide scan identifies novel Alzheimer’s disease loci. Alzheimers Dement. 2017;13:727–38.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen D-W, Yang J-F, Tang Z, Dong X-M, Feng X-L, Yu S, et al. Cholesteryl ester transfer protein polymorphism D442G associated with a potential decreased risk for Alzheimer’s disease as a modifier for APOE epsilon4 in Chinese. Brain Res. 2008;1187:52–7.

    Article  CAS  PubMed  Google Scholar 

  26. Dai Q-H, Gong D-K. Association of the polymorphisms and plasma level of CHI3L1 with Alzheimer’s disease in the Chinese Han population: a case-control study. Neuropsychobiology. 2018:1–9.

  27. Anvar NE, Saliminejad K, Ohadi M, Kamali K, Daneshmand P, Khorshid HRK. Association between polymorphisms in Interleukin-16 gene and risk of late-onset Alzheimer’s disease. J Neurol Sci. 2015;358:324–7.

    Article  CAS  PubMed  Google Scholar 

  28. Lin M, Zhao L, Fan J, Lian X-G, Ye J-X, Wu L, et al. Association between HFE polymorphisms and susceptibility to Alzheimer’s disease: a meta-analysis of 22 studies including 4,365 cases and 8,652 controls. Mol Biol Rep. 2012;39:3089–95.

    Article  CAS  PubMed  Google Scholar 

  29. Li H-L, Lu S-J, Sun Y-M, Guo Q-H, Sadovnick AD, Wu Z-Y. The LRRK2 R1628P variant plays a protective role in Han Chinese population with Alzheimer’s disease. CNS Neurosci Ther. 2013;19:207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Janicki SC, Park N, Cheng R, Schupf N, Clark LN, Lee JH. Aromatase variants modify risk for Alzheimer’s disease in a multiethnic female cohort. Dement Geriatr Cogn Disord. 2013;35:340–6.

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, DeKosky ST, Luedecking-Zimmer E, Ganguli M, Kamboh MI. Genetic variation in alpha(1)-antichymotrypsin and its association with Alzheimer’s disease. Hum Genet. 2002;110:356–65.

    Article  CAS  PubMed  Google Scholar 

  32. Ji W, Xu L, Zhou H, Wang S, Fang Y. Meta-analysis of association between the genetic polymorphisms on chromosome 11q and Alzheimer’s disease susceptibility. Int J Clin Exp Med. 2015;8:18235–44.

    PubMed  PubMed Central  Google Scholar 

  33. Suri S, Heise V, Trachtenberg AJ, Mackay CE. The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE ɛ2. Neurosci Biobehav Rev. 2013;37:2878–86.

    Article  CAS  PubMed  Google Scholar 

  34. Xu Q, Brecht WJ, Weisgraber KH, Mahley RW, Huang Y. Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer. J Biol Chem. 2004;279:25511–6.

    Article  CAS  PubMed  Google Scholar 

  35. Morrow JA, Segall ML, Lund-Katz S, Phillips MC, Knapp M, Rupp B, et al. Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry. 2000;39:11657–66.

    Article  CAS  PubMed  Google Scholar 

  36. Mahoney-Sanchez L, Belaidi AA, Bush AI, Ayton S. The complex role of apolipoprotein E in Alzheimer’s disease: an overview and update. J Mol Neurosci Springer. 2016;60:325–35.

    Article  CAS  Google Scholar 

  37. Stipho F, Jackson R, Sabbagh MN. Pathologically confirmed Alzheimer’s disease in APOE ɛ2 homozygotes is rare but does occur. J Alzheimers Dis. 2018;62:1527–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Groot C, Sudre CH, Barkhof F, Teunissen CE, van Berckel BNM, Seo SW, et al. Clinical phenotype, atrophy, and small vessel disease in APOEε2 carriers with Alzheimer disease. Neurology [Internet]. 2018; Available from: https://doi.org/10.1212/WNL.0000000000006503

  39. Bratosiewicz-Wasik J, Liberski PP, Peplonska B, Styczynska M, Smolen-Dzirba J, Cycon M, et al. Regulatory region single nucleotide polymorphisms of the apolipoprotein E gene as risk factors for Alzheimer’s disease. Neurosci Lett. 2018;684:86–90.

    Article  CAS  PubMed  Google Scholar 

  40. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chiba-Falek O, Gottschalk WK, Lutz MW. The effects of the TOMM40 poly-T alleles on Alzheimer’s disease phenotypes. Alzheimers Dement. 2018;14:692–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jiao B, Liu X, Zhou L, Wang MH, Zhou Y, Xiao T, et al. Polygenic analysis of late-onset Alzheimer’s disease from Mainland China. PLoS One. Public Library of Science; 2015;10:e0144898.

  43. Huang K-L, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci. 2017;20:1052–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Motoi Y, Aizawa T, Haga S, Nakamura S, Namba Y, Ikeda K. Neuronal localization of a novel mosaic apolipoprotein E receptor, LR11, in rat and human brain. Brain Res. 1999;833:209–15.

    Article  CAS  PubMed  Google Scholar 

  45. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CAF, Breiderhoff T, Jansen P, Wu X, Bales KR, Cappai R, Masters CL, Gliemann J, Mufson EJ, Hyman BT, Paul SM, Nykjaer A, Willnow TE Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A. National Academy of Sciences; 2005;102:13461–13466.

  46. Sager KL, Wuu J, Leurgans SE, Rees HD, Gearing M, Mufson EJ, et al. Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. Ann Neurol. 2007;62:640–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yajima R, Tokutake T, Koyama A, Kasuga K, Tezuka T, Nishizawa M, et al. ApoE-isoform-dependent cellular uptake of amyloid-β is mediated by lipoprotein receptor LR11/SorLA. Biochem Biophys Res Commun. 2015;456:482–8.

    Article  CAS  PubMed  Google Scholar 

  48. Miyashita A, Koike A, Jun G, Wang L-S, Takahashi S, Matsubara E, et al. SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PLoS One. Public Library of Science; 2013;8:e58618.

  49. Zhang C-C, Wang H-F, Tan M-S, Wan Y, Zhang W, Zheng Z-J, et al. SORL1 is associated with the risk of late-onset Alzheimer’s disease: a replication study and meta-analyses. Mol Neurobiol. 2017;54:1725–32.

    Article  CAS  PubMed  Google Scholar 

  50. Verheijen J, Van den Bossche T, van der Zee J, Engelborghs S, Sanchez-Valle R, Lladó A, et al. A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease. Acta Neuropathol. 2016;132:213–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu G, Sun J-Y, Xu M, Yang X-Y, Sun B-L. SORL1 variants show different association with early-onset and late-onset Alzheimer’s disease risk. J Alzheimers Dis. 2017;58:1121–8.

    Article  CAS  PubMed  Google Scholar 

  52. Müller UC, Zheng H. Physiological functions of APP family proteins. Cold Spring Harb Perspect Med. 2012;2:a006288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde.” Clin Anat 1995;8:429–431.

  54. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2012;488:96–9.

  55. Benilova I, Gallardo R, Ungureanu A-A, Castillo Cano V, Snellinx A, Ramakers M, et al. The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-β (Aβ) aggregation. J Biol Chem. 2014;289:30977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maloney JA, Bainbridge T, Gustafson A, Zhang S, Kyauk R, Steiner P, et al. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J Biol Chem. 2014;289:30990–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang L-S, Naj AC, Graham RR, Crane PK, Kunkle BW, Cruchaga C, et al. Rarity of the Alzheimer disease-protective APP A673T variant in the United States. JAMA Neurol. 2015;72:209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lv H, Jia L, Jia J. Promoter polymorphisms which modulate APP expression may increase susceptibility to Alzheimer’s disease. Neurobiol Aging. 2008;29:194–202.

    Article  CAS  PubMed  Google Scholar 

  59. Chua CEL, Tang BL. Rab 10-a traffic controller in multiple cellular pathways and locations. J Cell Physiol. 2018;233:6483–94.

    Article  CAS  PubMed  Google Scholar 

  60. •• Ridge PG, Karch CM, Hsu S, Arano I, Teerlink CC, Ebbert MTW, et al. Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med. 2017;9:100 Identified RAB10 as a protective gene using a novel linkage approach to identify resilience alleles in elderly cognitively normal APOE e4 carriers within densely affected AD families.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang X, Huang TY, Yancey J, Luo H, Zhang Y-W. Role of Rab GTPases in Alzheimer’s Disease. ACS Chem Neurosci [Internet]. 2018; Available from: https://doi.org/10.1021/acschemneuro.8b00387

  62. Abshire ET, Chasseur J, Bohn JA, Del Rizzo PA, Freddolino PL, Goldstrohm AC, et al. The structure of human Nocturnin reveals a conserved ribonuclease domain that represses target transcript translation and abundance in cells. Nucleic Acids Res. 2018;46:6257–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hughes KL, Abshire ET, Goldstrohm AC. Regulatory roles of vertebrate Nocturnin: insights and remaining mysteries. RNA Biol. 2018:1–13.

  64. Wang X, Lopez OL, Sweet RA, Becker JT, DeKosky ST, Barmada MM, et al. Genetic determinants of disease progression in Alzheimer’s disease. J Alzheimers Dis. 2015;43:649–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li X-F, Kraev AS, Lytton J. Molecular cloning of a fourth member of the potassium-dependent sodium-calcium exchanger gene family, NCKX4. J Biol Chem. 2002;277:48410–7.

    Article  CAS  PubMed  Google Scholar 

  66. Yang X, Lytton J. Purinergic stimulation of K+-dependent Na+/Ca2+ exchanger isoform 4 requires dual activation by PKC and CaMKII. Biosci Rep [Internet]. 2013;33. Available from: https://doi.org/10.1042/BSR20130099

  67. Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu H, et al. RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. J Cell Sci. 2003;116:4159–68.

    Article  CAS  PubMed  Google Scholar 

  68. Kunkle BW, Vardarajan BN, Naj AC, Whitehead PL, Rolati S, Slifer S, et al. Early-onset Alzheimer disease and candidate risk genes involved in endolysosomal transport. JAMA Neurol. 2017;74:1113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Singh MK, Dadke D, Nicolas E, Serebriiskii IG, Apostolou S, Canutescu A, Egleston BL, Golemis EA A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell The American Society for Cell Biology; 2008;19:1627–36.

  70. Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M, Myers AJ, et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. Public Library of Science; 2014;10:e1004606.

  71. Ramanan VK, Risacher SL, Nho K, Kim S, Shen L, McDonald BC, et al. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain. 2015;138:3076–88.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dourlen P, Fernandez-Gomez FJ, Dupont C, Grenier-Boley B, Bellenguez C, Obriot H, et al. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry. Macmillan Publishers Limited. 2017;22:874–83.

    Article  CAS  PubMed  Google Scholar 

  73. Yamazaki T, Masuda J, Omori T, Usui R, Akiyama H, Maru Y. EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci. 2009;122:243–55.

    Article  CAS  PubMed  Google Scholar 

  74. Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C, et al. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 1999;13:3125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Martínez A, Otal R, Sieber B-A, Ibáñez C, Soriano E. Disruption of ephrin-A/EphA binding alters synaptogenesis and neural connectivity in the hippocampus. Neuroscience. 2005;135:451–61.

    Article  CAS  PubMed  Google Scholar 

  76. Lai K-O, Ip NY. Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr Opin Neurobiol. 2009;19:275–83.

    Article  CAS  PubMed  Google Scholar 

  77. Hughes TM, Lopez OL, Evans RW, Kamboh MI, Williamson JD, Klunk WE, et al. Markers of cholesterol transport are associated with amyloid deposition in the brain. Neurobiol Aging. 2014;35:802–7.

    Article  CAS  PubMed  Google Scholar 

  78. Wang H-F, Tan L, Hao X-K, Jiang T, Tan M-S, Liu Y, et al. Effect of EPHA1 genetic variation on cerebrospinal fluid and neuroimaging biomarkers in healthy, mild cognitive impairment and Alzheimer’s disease cohorts. J Alzheimers Dis IOS Press. 2015;44:115–23.

    Article  CAS  PubMed  Google Scholar 

  79. Liu G, Zhang Y, Wang L, Xu J, Chen X, Bao Y, et al. Alzheimer’s disease rs11767557 variant regulates EPHA1 gene expression specifically in human whole blood. J Alzheimers Dis. 2018;61:1077–88.

    Article  CAS  PubMed  Google Scholar 

  80. Mentrup T, Fluhrer R, Schröder B. Latest emerging functions of SPP/SPPL intramembrane proteases. Eur J Cell Biol. 2017;96:372–82.

    Article  CAS  PubMed  Google Scholar 

  81. Magno L, Lessard CB, Martins M, Cruz P, Katan M, Bilsland J, et al. Alzheimer’s disease phospholipase C-gamma-2 (PLCG2) protective variant is a functional hypermorph [Internet]. bioRxiv. 2018 [cited 2018 Nov 3]. p. 409706. Available from: https://www.biorxiv.org/content/early/2018/09/08/409706

  82. •• Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. 2017;49:1373–84 Identified PLCG2 as rare coding variant associated with reduced AD risk in a rare variant analysis in a three-stage case–control study of 85,133 subjects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217:459–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liang Y, Buckley TR, Tu L, Langdon SD, Tedder TF. Structural organization of the human MS4A gene cluster on chromosome 11q12. Immunogenetics. 2001;53:357–68.

    Article  CAS  PubMed  Google Scholar 

  85. Eon Kuek L, Leffler M, Mackay GA, Hulett MD. The MS4A family: counting past 1, 2 and 3. Immunol Cell Biol. 2016;94:11–23.

    Article  CAS  PubMed  Google Scholar 

  86. Ma J, Yu J-T, Tan L. MS4A cluster in Alzheimer’s disease. Mol Neurobiol Humana Press Inc. 2015;51:1240–8.

    Article  CAS  PubMed  Google Scholar 

  87. • Ghani M, Sato C, Kakhki EG, Gibbs JR, Traynor B, St George-Hyslop P, et al. Mutation analysis of the MS4A and TREM gene clusters in a case-control Alzheimer’s disease data set. Neurobiol Aging. 2016;42:217.e7–217.e13 Conducted a rare variant analysis in the MS4A gene cluster and found that controls had a higher burden of damaging missense substitutions and loss-of-function variants.

    Article  CAS  Google Scholar 

  88. Karch CM, Jeng AT, Nowotny P, Cady J, Cruchaga C, Goate AM. Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One. Public Library of Science. 2012;7:e50976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Proitsi P, Lee SH, Lunnon K, Keohane A, Powell J, Troakes C, et al. Alzheimer’s disease susceptibility variants in the MS4A6A gene are associated with altered levels of MS4A6A expression in blood. Neurobiol Aging Elsevier. 2014;35:279–90.

    Article  CAS  PubMed  Google Scholar 

  90. Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY, et al. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem. 2004;279:41197–207.

    Article  CAS  PubMed  Google Scholar 

  91. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22:336–45.

    Article  CAS  PubMed  Google Scholar 

  92. Elali A, Rivest S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol. 2013;4:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Karasinska JM, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit JK, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445–55.

    Article  CAS  PubMed  Google Scholar 

  94. Kölsch H, Lütjohann D, Jessen F, Von Bergmann K, Schmitz S, Urbach H, et al. Polymorphism in ABCA1 influences CSF 24S-hydroxycholesterol levels but is not a major risk factor of Alzheimer’s disease. Int J Mol Med. 2006;17:791–4.

    PubMed  Google Scholar 

  95. Cascorbi I, Flüh C, Remmler C, Haenisch S, Faltraco F, Grumbt M, et al. Association of ATP-binding cassette transporter variants with the risk of Alzheimer’s disease | Pharmacogenomics [Internet]. [cited 2018 Nov 10]. Available from: https://doi.org/10.2217/pgs.13.18

  96. Li Y, Tacey K, Doil L, van Luchene R, Garcia V, Rowland C, et al. Association of ABCA1 with late-onset Alzheimer’s disease is not observed in a case-control study. Neurosci Lett. 2004;366:268–71.

    Article  CAS  PubMed  Google Scholar 

  97. Shibata N, Kawarai T, Lee JH, Lee H-S, Shibata E, Sato C, et al. Association studies of cholesterol metabolism genes (CH25H, ABCA1 and CH24H) in Alzheimer’s disease. Neurosci Lett. 2006;391:142–6.

    Article  CAS  PubMed  Google Scholar 

  98. Wahrle SE, Shah AR, Fagan AM, Smemo S, Kauwe JSK, Grupe A, et al. Apolipoprotein E levels in cerebrospinal fluid and the effects of ABCA1 polymorphisms. Mol Neurodegener. 2007;2:7.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Katzov H, Chalmers K, Palmgren J, Andreasen N, Johansson B, Cairns NJ, et al. Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to beta-amyloid metabolism. Hum Mutat. 2004;23:358–67.

    Article  CAS  PubMed  Google Scholar 

  100. Reynolds CA, Hong M-G, Eriksson UK, Blennow K, Bennet AM, Johansson B, et al. A survey of ABCA1 sequence variation confirms association with dementia. Hum Mutat. 2009;30:1348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sundar PD, Feingold E, Minster RL, DeKosky ST, Kamboh MI. Gender-specific association of ATP-binding cassette transporter 1 (ABCA1) polymorphisms with the risk of late-onset Alzheimer’s disease. Neurobiol Aging. 2007;28:856–62.

    Article  CAS  PubMed  Google Scholar 

  102. Nordestgaard LT, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Loss-of-function mutation in ABCA1 and risk of Alzheimer’s disease and cerebrovascular disease. Alzheimers Dement. 2015;11:1430–8.

    Article  PubMed  Google Scholar 

  103. Rodríguez-Rodríguez E, Mateo I, Llorca J, Sánchez-Quintana C, Infante J, García-Gorostiaga I, et al. Association of genetic variants of ABCA1 with Alzheimer’s disease risk. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:964–8.

    Article  CAS  PubMed  Google Scholar 

  104. Wollmer MA, Streffer JR, Lütjohann D, Tsolaki M, Iakovidou V, Hegi T, et al. ABCA1 modulates CSF cholesterol levels and influences the age at onset of Alzheimer’s disease. Neurobiol Aging. 2003;24:421–6.

    Article  CAS  PubMed  Google Scholar 

  105. Wang F, Jia J. Polymorphisms of cholesterol metabolism genes CYP46 and ABCA1 and the risk of sporadic Alzheimer’s disease in Chinese. Brain Res. 2007;1147:34–8.

    Article  CAS  PubMed  Google Scholar 

  106. Lupton MK, Proitsi P, Lin K, Hamilton G, Daniilidou M, Tsolaki M, et al. The role of ABCA1 gene sequence variants on risk of Alzheimer’s disease. J Alzheimers Dis. 2014;38:897–906.

    Article  CAS  PubMed  Google Scholar 

  107. Fan J, Zhao RQ, Parro C, Zhao W, Chou H-Y, Robert J, et al. Small molecule inducers of ABCA1 and apoE that act through indirect activation of the LXR pathway. J Lipid Res. 2018;59:830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Báez-Becerra C, Filipello F, Sandoval-Hernández A, Arboleda H, Arboleda G. Liver X receptor agonist GW3965 regulates synaptic function upon amyloid beta exposure in hippocampal neurons. Neurotox Res. 2018;33:569–79.

    Article  CAS  PubMed  Google Scholar 

  109. Lei C, Lin R, Wang J, Tao L, Fu X, Qiu Y, et al. Amelioration of amyloid β-induced retinal inflammatory responses by a LXR agonist TO901317 is associated with inhibition of the NF-κB signaling and NLRP3 inflammasome. Neuroscience. 2017;360:48–60.

    Article  CAS  PubMed  Google Scholar 

  110. Ren G, Bao W, Zeng Z, Zhang W, Shang C, Wang M, et al. RXRα nitro-ligand Z-10 and its optimized derivative Z-36 reduce β-amyloid plaques in AD mouse model. Mol Pharm [Internet]. 2018; Available from: https://doi.org/10.1021/acs.molpharmaceut.8b00096

  111. Wang W, Nakashima K-I, Hirai T, Inoue M. Neuroprotective effect of naturally occurring RXR agonists isolated from Sophora tonkinensis Gagnep. on amyloid-β-induced cytotoxicity in PC12 cells. J Nat Med [Internet]. 2018; Available from: https://doi.org/10.1007/s11418-018-1257-z

  112. Chernick D, Ortiz-Valle S, Jeong A, Swaminathan SK, Kandimalla K, Rebeck GW, et al. HDL mimetic peptide 4F mitigates Aβ-induced inhibition of ApoE secretion and lipidation in primary astrocytes and microglia. J Neurochem [Internet]. 2018; Available from: https://doi.org/10.1111/jnc.14554

  113. Maezawa I, Zou B, Di Lucente J, Cao WS, Pascual C, Weerasekara S, et al. The anti-amyloid-β and neuroprotective properties of a novel tricyclic pyrone molecule. J Alzheimers Dis. 2017;58:559–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tice CM, Noto PB, Fan KY, Zhao W, Lotesta SD, Dong C, et al. Brain penetrant liver X receptor (LXR) modulators based on a 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole core. Bioorg Med Chem Lett. 2016;26:5044–50.

    Article  CAS  PubMed  Google Scholar 

  115. Boehm-Cagan A, Bar R, Liraz O, Bielicki JK, Johansson JO, Michaelson DM. ABCA1 agonist reverses the ApoE4-driven cognitive and brain pathologies. J Alzheimers Dis. 2016;54:1219–33.

    Article  CAS  PubMed  Google Scholar 

  116. Sun Y, Fan J, Zhu Z, Guo X, Zhou T, Duan W, et al. Small molecule TBTC as a new selective retinoid X receptor α agonist improves behavioral deficit in Alzheimer’s disease model mice. Eur J Pharmacol. 2015;762:202–13.

    Article  CAS  PubMed  Google Scholar 

  117. Williams TJ. Eotaxin-1 (CCL11). Front Immunol. 2015;6:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. • Lalli MA, Bettcher BM, Arcila ML, Garcia G, Guzman C, Madrigal L, et al. Whole-genome sequencing suggests a chemokine gene cluster that modifies age at onset in familial Alzheimer’s disease. Mol Psychiatry. 2015;20:1294–300 In a candidate gene study, rare variants in ABCA1 were found to be more frequent in controls than cases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huber AK, Giles DA, Segal BM, Irani DN. An emerging role for eotaxins in neurodegenerative disease. Clin Immunol. 2018;189:29–33.

    Article  CAS  PubMed  Google Scholar 

  121. Zollino M, Orteschi D, Murdolo M, Lattante S, Battaglia D, Stefanini C, et al. Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nat Genet. 2012;44:636–8.

    Article  CAS  PubMed  Google Scholar 

  122. Caffrey TM, Joachim C, Wade-Martins R. Haplotype-specific expression of the N-terminal exons 2 and 3 at the human MAPT locus. Neurobiol Aging. 2008;29:1923–9.

    Article  CAS  PubMed  Google Scholar 

  123. Wang J, Feng JQ. Signaling pathways critical for tooth root formation. J Dent Res. 2017;96:1221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Edelmann S, Fahrner R, Malinka T, Song BH, Stroka D, Mermod N. Nuclear factor I-C acts as a regulator of hepatocyte proliferation at the onset of liver regeneration. Liver Int. 2015;35:1185–94.

    Article  CAS  PubMed  Google Scholar 

  125. Zheng J-Y, Sun J, Ji C-M, Shen L, Chen Z-J, Xie P, et al. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer’s disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling. Neurobiol Aging. 2017;54:112–32.

    Article  CAS  PubMed  Google Scholar 

  126. Mason S, Piper M, Gronostajski RM, Richards LJ. Nuclear factor one transcription factors in CNS development. Mol Neurobiol. 2009;39:10–23.

    Article  CAS  PubMed  Google Scholar 

  127. Kamboh MI. A brief synopsis on the genetics of Alzheimer’s disease. Curr Genet Med Rep. Springer. 2018:1–3.

  128. Bis JC, Jian X, Kunkle BW, Chen Y, Hamilton-Nelson KL, Bush WS, et al. Whole exome sequencing study identifies novel rare and common Alzheimer’s-associated variants involved in immune response and transcriptional regulation. Mol Psychiatry. Nature Publishing Group. 2018;1.

  129. Rathore N, Ramani SR, Pantua H, Payandeh J, Bhangale T, Wuster A, et al. Paired immunoglobulin-like type 2 receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer’s disease. PLoS Genet. Public Library of Science. 2018;14:e1007427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cuccaro D, De Marco EV, Cittadella R, Cavallaro S. Copy number variants in Alzheimer’s disease. J Alzheimers Dis. 2017;55:37–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Goate.

Ethics declarations

Conflict of Interest

Shea J Andrews and Brian Fulton-Howard each declare no potential conflict of interest.

Alison Goate reports a grant from the NIH (NIA 1 U01 AG049508).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurogenetics and Psychiatric Genetics

Electronic Supplementary Material

Supplementary Table 1:

Reported Protective variants for Alzheimer's disease identified in our literature search. (XLSX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, S.J., Fulton-Howard, B. & Goate, A. Protective Variants in Alzheimer’s Disease. Curr Genet Med Rep 7, 1–12 (2019). https://doi.org/10.1007/s40142-019-0156-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-019-0156-2

Keywords

Navigation