Skip to main content
Log in

RNA Sequencing and Genetic Disease

  • Clinical Genetics (J Stoler, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Next-generation sequencing is a revolutionary approach for highly accurate identification of gene associations with specific human disease phenotypes. RNA sequencing (RNA-seq) holds great promise for identifying distinct gene expression “signatures” for the detection, prognosis, and chemosensitivity of human disease. However, this technique has yet to be adopted as a standard medical practice.

Recent Findings

The recent emergence of high-throughput, next-generation sequencing technology has facilitated significant advancements in understanding evolutionary diversity and disease. RNA-seq in particular is an invaluable tool for profiling transcription across the entire human genome (i.e., the “transcriptome”) at high resolution, providing the means to quantitatively study links among genotypes, transcript abundance, and other transcript-based features and human phenotypes. RNA-seq technology provides an essential layer of molecular information providing investigators and clinicians a systems genetics prospective of human disease. Integrated analysis of DNA- and RNA-seq data allows elucidation of the causal and regulatory mechanisms of the complex traits of human disease.

Summary

Here, we review RNA-seq technology and present a summary of different methods and their application to the study of human genetic disease. We further illustrate the utility of RNA-seq technology as an important tool for identifying novel transcriptomic biomarkers, and how these link to the pathological phenotypes of human disease initiation and progression. Advanced machine learning techniques for RNA-seq data analysis are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance; •• Of major importance

  1. Costa V, Angelini C, De Feis I, Ciccodicola A. Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol. 2010;2010:853916.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gaidatzis D, Burger L, Florescu M, Stadler MB. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat Biotechnol. 2015;33:722–9.

    Article  CAS  PubMed  Google Scholar 

  3. Han H, Jiang X. Disease biomarker query from RNA-seq data. Cancer Inf. 2014;13:81–94.

    Article  Google Scholar 

  4. Piskol R, Ramaswami G, Li JB. Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet. 2013;93:641–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen JJ, Lin WJ, Chen HC. Pharmacogenomic biomarkers for personalized medicine. Pharmacogenomics. 2013;14:969–80.

    Article  CAS  PubMed  Google Scholar 

  6. Mills JD, Nalpathamkalam T, Jacobs HI, Janitz C, et al. RNA-seq analysis of the parietal cortex in Alzheimer’s disease reveals alternatively spliced isoforms related to lipid metabolism. Neurosci Lett. 2013;536:90–5.

    Article  CAS  PubMed  Google Scholar 

  7. • Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, et al., Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat Genet. 2015;47:445–7. This article describes a search method for identifying rare variants associated with a specific disease.

  8. Simon EP, Freije CA, Farber BA, Lalazar G, et al. Transcriptomic characterization of fibrolamellar hepatocellular carcinoma. Proc Natl Acad Sci USA. 2015;112:E5916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Keuren-Jensen K, Keats JJ, Craig DW. Bringing RNA-seq closer to the clinic. Nat Biotechnol. 2014;32:884–5.

    Article  PubMed  Google Scholar 

  10. Xuan J, Yu Y, Qing T, Guo L, et al. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 2013;340:284–95.

    Article  CAS  PubMed  Google Scholar 

  11. Kaye FJ. Mutation-associated fusion cancer genes in solid tumors. Mol Cancer Ther. 2009;8:1399–408.

    Article  CAS  PubMed  Google Scholar 

  12. • Best MG, Sol N, Kooi I, Tannous J, et al., RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. 2015;28:666–76. This study describes how “tumor-educated” platelets, having distinct RNA profiles, can be diagnostic for numerous tumor types.

  13. •• Gonorazky H, Liang M, Cummings B, Lek M, et al., RNAseq analysis for the diagnosis of muscular dystrophy. Ann Clin Transl Neurol. 2016;3:55–60. This report describes the use of RNA-seq to identify a non-coding intronic mutation in the dystrophin-encoding gene (DMD), representing an effective approach for examining non-coding regions.

  14. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rapaport F, Khanin R, Liang Y, Pirun M, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 2013;14:R95.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu J, Su Z, Hong H, Thierry-Mieg J, et al. Cross-platform ultradeep transcriptomic profiling of human reference RNA samples by RNA-seq. Sci Data. 2014;1:140020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. •• Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, et al., RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347:1254806. This article describes an approach for identifying genetic variants that associate with abnormal spicing, a component of the etiology of numberous diseases.

  19. Ferreira PG, Jares P, Rico D, Gomez-Lopez G, et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res. 2014;24:212–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Jung H, Lee D, Lee J, Park D, et al., Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet. 2015;47:1242–8. This publication analyzed over 900 somatic, exomic single gene variations (SNVs) to demonstrate that intron retention and exon skipping are major determinants of cancer phenotypes.

  21. Berger MF, Levin JZ, Vijayendran K, Sivachenko A, et al. Integrative analysis of the melanoma transcriptome. Genome Res. 2010;20:413–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Honeyman JN, Simon EP, Robine N, Chiaroni-Clarke R, et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science. 2014;343:1010–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stransky N, Cerami E, Schalm S, Kim JL, et al. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, et al. Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015;5:8057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li P, Chen S, Chen H, Mo X, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–6.

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Zhang Y, Huang L, Zhang J, et al. Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol. 2015;8:16020–5.

    PubMed  PubMed Central  Google Scholar 

  27. Buchholz M. Circulating RNAs in medical diagnostics and as disease-relevant biomarkers. Pharmazie. 2016;71:17–20.

    CAS  PubMed  Google Scholar 

  28. Cooper GM, Shendure J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet. 2011;12:628–40.

    Article  CAS  PubMed  Google Scholar 

  29. Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93:779–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.

    Article  CAS  PubMed  Google Scholar 

  31. Costa V, Aprile M, Esposito R, Ciccodicola A. RNA-seq and human complex diseases: recent accomplishments and future perspectives. Eur J Hum Genet. 2013;21:134–42.

    Article  CAS  PubMed  Google Scholar 

  32. Buckland PR. Allele-specific gene expression differences in humans. Hum Mol Genet. 2004;13(Spec No 2):R255–60.

    Article  CAS  PubMed  Google Scholar 

  33. Yan H, Zhou W. Allelic variations in gene expression. Curr Opin Oncol. 2004;16:39–43.

    Article  PubMed  Google Scholar 

  34. Kilpinen H, Barrett JC. How next-generation sequencing is transforming complex disease genetics. Trends Genet. 2013;29:23–30.

    Article  CAS  PubMed  Google Scholar 

  35. Wang K, Kim C, Bradfield J, Guo Y, et al. Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement. Genome Med. 2013;5:67.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Merico D, Roifman M, Braunschweig U, Yuen RK, et al. Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing. Nat Commun. 2015;6:8718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Codina-Sola M, Rodriguez-Santiago B, Homs A, Santoyo J, et al. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders. Mol Autism. 2015;6:21.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dong L, Wang W, Li A, Kansal R, et al. Clinical next generation sequencing for precision medicine in cancer. Curr Genomics. 2015;16:253–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cookson W, Liang L, Abecasis G, Moffatt M, et al. Mapping complex disease traits with global gene expression. Nat Rev Genet. 2009;10:184–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lappalainen T, Sammeth M, Friedlander, t Hoen PA, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501:506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Consortium GT, Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.

    Article  Google Scholar 

  42. Dimas AS, Deutsch S, Stranger BE, Montgomery SB, et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science. 2009;325:1246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Montgomery SB, Lappalainen T, Gutierrez-Arcelus M, Dermitzakis ET. Rare and common regulatory variation in population-scale sequenced human genomes. PLoS Genet. 2011;7:e1002144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nica AC, Montgomery SB, Dimas AS, Stranger BE, et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 2010;6:e1000895.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pickrell JK, Marioni JC, Pai AA, Degner JF, et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature. 2010;464:768–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Filichkin SA, Priest HD, Givan SA, Shen R, et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 2010;20:45–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang ET, Sandberg R, Luo S, Khrebtukova I, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang K, Singh D, Zeng Z, Coleman SJ, et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 2010;38:e178.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ramaswami G, Deng P, Zhang R, Carbone MA, et al. Genetic mapping uncovers cis-regulatory landscape of RNA editing. Nat Commun. 2015;6:8194.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pai AA, Cain CE, Mizrahi-Man O, De Leon S, et al. The contribution of RNA decay quantitative trait loci to inter-individual variation in steady-state gene expression levels. PLoS Genet. 2012;8:e1003000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ambros V, Chen X. The regulation of genes and genomes by small RNAs. Development. 2007;134:1635–41.

    Article  CAS  PubMed  Google Scholar 

  52. Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13:528–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chin A, Mirzal A, Haron H, Hamed H, Supervised, unsupervised and semi-supervised feature selection: a review on gene selection. IEEE/ACM Trans Comput Biol Bioinform. 2015.

  54. Littman ML. Reinforcement learning improves behaviour from evaluative feedback. Nature. 2015;521:445–51.

    Article  CAS  PubMed  Google Scholar 

  55. Costello JC, Heiser LM, Georgii E, Gonen M, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32:1202–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Curtis C, Shah SP, Chin SF, Turashvili G, et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. • Nikas JB, A mathematical model for short-term vs. long-term survival in patients with glioma. Am J Cancer Res. 2014;4:862–73. This study demonstrated a bioinformatics approach for analyzing RNA-seq to identify the top most differentially expressed genes in glioma samples, that predict short-term (1-year) vs. long-term (3-year) prognosis of survival.

  58. • Sinicropi D, Qu K, Collin F, Crager M, et al., Whole transcriptome RNA-seq analysis of breast cancer recurrence risk using formalin-fixed paraffin-embedded tumor tissue. PLoS One. 2012;7:e40092. These authors describe a protocol for successfully optimizing an RNA-seq library obtained from freeze-fractured, paraffin-embedded (FFPE) specimens.

  59. •• Yuan Y, Van Allen EM, Omberg L, Wagle N, et al., Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat Biotechnol. 2014;32:644–52. This study provides a method for integrating numerous types of high-throughput (whole genome RNA and DNA, DNA methylation, and microRNA expression) with specific clinical variables.

  60. Green EK, Grozeva D, Jones I, Jones L, et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry. 2010;15:1016–22.

    Article  CAS  PubMed  Google Scholar 

  61. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reinhold WC, Varma S, Rajapakse VN, Luna A, et al. Using drug response data to identify molecular effectors, and molecular “omic” data to identify candidate drugs in cancer. Hum Genet. 2015;134:3–11.

    Article  CAS  PubMed  Google Scholar 

  63. Maulik U, Mukhopadhyay A, Chakraborty D. Gene-expression-based cancer subtypes prediction through feature selection and transductive SVM. IEEE Trans Biomed Eng. 2013;60:1111–7.

    Article  PubMed  Google Scholar 

  64. Wacholder S, Hartge P, Prentice R, Garcia-Closas M, et al. Performance of common genetic variants in breast-cancer risk models. N Engl J Med. 2010;362:986–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. •• Cruz JA and Wishart DS, Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2006;2:59–77. This report describes how various statistical probabilistic, and optimization techniques can facilitate “machine learning” of specific high-throughput genomic data to associate with clinical data such as cancer prognosis and prediction.

  66. • Michiels S, Koscielny S, and Hill C, Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet. 2005;365:488-92. This article describes how high-throughput microarray data can provide gene expression “signatures” for classifying cancer outcomes.

  67. Grosse SD. Economic analyses of genetic tests in personalized medicine: clinical utility first, then cost utility. Genet Med. 2014;16:225–7.

    Article  PubMed  Google Scholar 

  68. Phillips KA, Sakowski JA, Trosman J, Dougla MP, et al. The economic value of personalized medicine tests: what we know and what we need to know. Genet Med. 2014;16:251–7.

    Article  PubMed  Google Scholar 

  69. Chan IS, Ginsburg GS. Personalized medicine: progress and promise. Annu Rev Genomics Hum Genet. 2011;12:217–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Chittenden.

Ethics declarations

Conflict of Interest

Zehua Chen, Ryan P. Abo, Shannon T. Bailey, Jike Cui, Curt Balch, Jeffrey R. Gulcher, and Thomas W. Chittenden declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Zehua Chen, Ryan P. Abo, Shannon T. Bailey and Jike Cui have contributed equally to this work.

This article is part of the Topical collection on Clinical Genetics.

Glossary

eQTL

Expression quantitative trait loci. Loci within a genome that affect the level of expression of particular mRNAs.

edQTL

Editing quantitative trait loci. Loci within a genome that are associated with alterations in RNA editing levels.

Deep learning

Deep learning is a branch of machine learning based on modeling data with biologically-inspired algorithms, such as artificial neural networks.

Machine learning

Machine learning is a form of artificial intelligence (AI) that allows computers to iteratively learn hidden patterns within data without being explicitly programmed to do so.

rdQTL

RNA decay quantitative trait loci. Loci with a genome that are associated with differences in the rate of mRNA decay across individuals.

sQTL

Splicing quantitative trait loci. Loci within a genome that affect splicing events.

Transcriptome

The comprehensive set of expressed mRNAs within a particular cell, tissue, or organism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Abo, R.P., Bailey, S.T. et al. RNA Sequencing and Genetic Disease. Curr Genet Med Rep 4, 49–56 (2016). https://doi.org/10.1007/s40142-016-0098-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-016-0098-x

Keywords

Navigation