Skip to main content

Advertisement

Log in

Protein for the Pre-Surgical Cancer Patient: a Narrative Review

  • PREHABILITATION (B RIEDEL and S JACK, SECTION EDITORS)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Prehabilitation prepares patients to withstand the rigors of surgery; however, there is little consensus on nutritional prehabilitative support for surgical patients. In this narrative review, we offer our perspectives on the role of protein in surgical prehabilitation.

Recent Findings

While the exact dietary protein requirements of pre-surgical patients are unknown, protein is an important piece of any nutritional care plan. Body protein, in particular skeletal muscle, is catabolized to support surgery-related systemic responses such as inflammation and wound healing. Older adults and patients with cancer, who may be sarcopenic, undernourished, or cachectic, often experience perturbations in protein metabolism that deplete skeletal muscle tissue prior to surgery. Reduced body protein combined with surgery-induced stress can result in a concomitant loss of physiologic function.

Summary

Multi-modal prehabilitation that includes nutrition and exercise can augment patients’ body protein reserve before surgery and mitigate losses post-surgery to improve functional outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Gillis C, Gramlich L, Culos-Reed SN, et al. Third-variable effects: tools to understand who, when, why, and how patients benefit from surgical prehabilitation. J Surg Res. 2021;258:443–52. A methodological paper on how analyses of external variables, such as malnutrition, can influence prehabilitation outcomes.

    Article  PubMed  Google Scholar 

  2. Sun Z, Kong X-J, Jing X, et al. Nutritional Risk Screening 2002 as a Predictor of Postoperative Outcomes in Patients Undergoing Abdominal Surgery: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. PLoS ONE. 2015;10:e0132857–e0132857.

    Article  PubMed  PubMed Central  Google Scholar 

  3. • Gillis C, Buhler K, Bresee L, et al. Gastroenterology. 2018;155:391-410.e4. A meta-analysis of 9 studies identified that nutritional prehabilitation alone or combined with an exercise program significantly decreased length of hospital stay by 2 days in 914 patients undergoing colorectal surgery, indicating that nutrition optimizaiton is a primary component of prehabilitation.

    Article  PubMed  Google Scholar 

  4. Heger P, Probst P, Wiskemann J, et al. A Systematic Review and Meta-analysis of Physical Exercise Prehabilitation in Major Abdominal Surgery (PROSPERO 2017 CRD42017080366). J Gastrointest Surg. 2020;24:1375–85.

    Article  PubMed  Google Scholar 

  5. Deutz NE, Bauer JM, Barazzoni R, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33:929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arends J, Baracos V, Bertz H, et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin Nutr. 2017;36:1187–96.

    Article  CAS  PubMed  Google Scholar 

  7. Weimann A, Braga M, Carli F, et al. ESPEN guideline: Clinical nutrition in surgery. Clin Nutr. 2017;36:623–50.

    Article  PubMed  Google Scholar 

  8. Waterlow JC, Jackson AA. Nutrition and protein turnover in man. Br Med Bull. 1981;37:5–10.

    Article  CAS  PubMed  Google Scholar 

  9. Nakshabendi IM, McKee R, Downie S, et al. Rates of small intestinal mucosal protein synthesis in human jejunum and ileum. Am J Physiol. 1999;277:E1028–31.

    CAS  PubMed  Google Scholar 

  10. Stokes T, Hector AJ, Morton RW, et al. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients. 2018;10(2):180.

    Article  PubMed Central  Google Scholar 

  11. Gillis C, Carli F. Promoting Perioperative Metabolic and Nutritional Care. Anesthesiology. 2015;123:1455–72.

    Article  CAS  PubMed  Google Scholar 

  12. Winter A, MacAdams J, Chevalier S. Normal protein anabolic response to hyperaminoacidemia in insulin-resistant patients with lung cancer cachexia. Clin Nutr. 2012;31:765–73.

    Article  CAS  PubMed  Google Scholar 

  13. Goodman CA. Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass. J Appl Physiol. 1985;2019(127):581–90.

    Google Scholar 

  14. Drummond MJ, Dreyer HC, Fry CS, et al. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol. 1985;2009(106):1374–84.

    Google Scholar 

  15. Institute of Medicine. Panel on M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, D.C: National Academies Press; 2005.

    Google Scholar 

  16. Shils ME, Shike M. Modern nutrition in health and disease. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  17. Pannemans DL, Halliday D, Westerterp KR, et al. Effect of variable protein intake on whole-body protein turnover in young men and women. Am J Clin Nutr. 1995;61:69–74.

    Article  CAS  PubMed  Google Scholar 

  18. Garlick PJ, McNurlan MA, Ballmer PE. Influence of dietary protein intake on whole-body protein turnover in humans. Diabetes Care. 1991;14:1189–98.

    Article  CAS  PubMed  Google Scholar 

  19. Højfeldt G, Bülow J, Agergaard J, et al. Impact of habituated dietary protein intake on fasting and postprandial whole-body protein turnover and splanchnic amino acid metabolism in elderly men: a randomized, controlled, crossover trial. Am J Clin Nutr. 2020;112:1468–84.

    Article  PubMed  Google Scholar 

  20. Gorissen SH, Horstman AM, Franssen R, et al. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial. Am J Clin Nutr. 2016;105:332–42.

    Article  PubMed  Google Scholar 

  21. Hursel R, Martens EA, Gonnissen HK, et al. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy. PLoS One. 2015;10:e0137183.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nair KS, Woolf PD, Welle SL, et al. Leucine, glucose, and energy metabolism after 3 days of fasting in healthy human subjects. Am J Clin Nutr. 1987;46:557–62.

    Article  CAS  PubMed  Google Scholar 

  23. Rennie MJ, Tipton KD. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr. 2000;20:457–83.

    Article  CAS  PubMed  Google Scholar 

  24. White JV, Guenter P, Jensen G, et al. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr. 2012;36:275–83.

    Article  PubMed  Google Scholar 

  25. Hoffer LJ. Clinical nutrition: 1. Protein-energy malnutrition in the inpatient. CMAJ. 2001;165:1345–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4:177–97.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Misra M, Klibanski A. Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocrinol. 2014;2:581–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaw JH, Klein S, Wolfe RR. Assessment of alanine, urea, and glucose interrelationships in normal subjects and in patients with sepsis with stable isotopic tracers. Surgery. 1985;97:557–68.

    CAS  PubMed  Google Scholar 

  29. Calloway DH, Spector H. Nitrogen balance as related to caloric and protein intake in active young men. Am J Clin Nutr. 1954;2:405–12.

    Article  CAS  PubMed  Google Scholar 

  30. Welle S, Nair KS. Relationship of resting metabolic rate to body composition and protein turnover. Am J Physiol. 1990;258:E990–8.

    CAS  PubMed  Google Scholar 

  31. Giordano M, Castellino P. Correlation between amino acid induced changes in energy expenditure and protein metabolism in humans. Nutrition. 1997;13:309–12.

    Article  CAS  PubMed  Google Scholar 

  32. Gibson NR, Fereday A, Cox M, et al. Influences of dietary energy and protein on leucine kinetics during feeding in healthy adults. Am J Physiol. 1996;270:E282–91.

    CAS  PubMed  Google Scholar 

  33. Soenen S, Martens EAP, Hochstenbach-Waelen A, et al. Normal Protein Intake Is Required for Body Weight Loss and Weight Maintenance, and Elevated Protein Intake for Additional Preservation of Resting Energy Expenditure and Fat Free Mass. J Nutr. 2013;143:591–6.

    Article  CAS  PubMed  Google Scholar 

  34. Longland TM, Oikawa SY, Mitchell CJ, et al. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. Am J Clin Nutr. 2016;103:738–46.

    Article  CAS  PubMed  Google Scholar 

  35. Drummen M, Tischmann L, Gatta-Cherifi B, et al. High Compared with Moderate Protein Intake Reduces Adaptive Thermogenesis and Induces a Negative Energy Balance during Long-term Weight-Loss Maintenance in Participants with Prediabetes in the Postobese State: A PREVIEW Study. J Nutr. 2020;150:458–63.

    Article  PubMed  Google Scholar 

  36. Schricker T, Meterissian S, Donatelli F, et al. Parenteral nutrition and protein sparing after surgery: do we need glucose? Metabolism. 2007;56:1044–50.

    Article  CAS  PubMed  Google Scholar 

  37. Institute of Medicine. Subcommittee on I, Uses of Dietary Reference I. Dietary reference intakes. Applications in dietary assessment: a report of the Subcommittees on Interpretation and Uses of Dietary Reference Intakes and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. Washington, D.C.: National Academy Press; 2000.

  38. Phillips SM, Parise G, Roy BD, et al. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol. 2002;80:1045–53.

    Article  CAS  PubMed  Google Scholar 

  39. Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273:E99-107.

    CAS  PubMed  Google Scholar 

  40. Phillips SM. Protein requirements and supplementation in strength sports. Nutrition. 2004;20:689–95.

    Article  CAS  PubMed  Google Scholar 

  41. Atherton PJ, Etheridge T, Watt PW, et al. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr. 2010;92:1080–8.

    Article  CAS  PubMed  Google Scholar 

  42. Biolo G, Tipton KD, Klein S, et al. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;273:E122–9.

    CAS  PubMed  Google Scholar 

  43. Timmerman KL, Dhanani S, Glynn EL, et al. A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am J Clin Nutr. 2012;95:1403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. •• Morton RW, Murphy KT, McKellar SR, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British journal of sports medicine. 2018;52:376–84. A meta-analysis of 49 randomized studies with 1863 participants on protein supplementation with >6 weeks of resistance training in healthy adults. The authors identified that protein supplementation, up to a maximum of 1.6g/kg, enhances muscle mass and strength.

    Article  PubMed  Google Scholar 

  45. Phillips SM, Van Loon LJ. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29(Suppl 1):S29-38.

    Article  PubMed  Google Scholar 

  46. Hartman JW, Moore DR, Phillips SM. Resistance training reduces whole-body protein turnover and improves net protein retention in untrained young males. Appl Physiol Nutr Metab. 2006;31:557–64.

    Article  CAS  PubMed  Google Scholar 

  47. Jäger R, Kerksick CM, Campbell BI, et al. International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr. 2017;14:20.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Phillips SM, Glover EI, Rennie MJ. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol. 2009;107:645–54.

    Article  CAS  PubMed  Google Scholar 

  49. Kortebein P, Symons TB, Ferrando A, et al. Functional impact of 10 days of bed rest in healthy older adults. J Gerontol A Biol Sci Med Sci. 2008;63:1076–81.

    Article  PubMed  Google Scholar 

  50. Paddon-Jones D, Sheffield-Moore M, Cree MG, et al. Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab. 2006;91:4836–41.

    Article  CAS  PubMed  Google Scholar 

  51. de Boer MD, Selby A, Atherton P, et al. The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol. 2007;585:241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Biolo G, Pišot R, Mazzucco S, et al. Anabolic resistance assessed by oral stable isotope ingestion following bed rest in young and older adult volunteers: Relationships with changes in muscle mass. Clin Nutr. 2017;36:1420–6.

    Article  CAS  PubMed  Google Scholar 

  53. Morton RW, Traylor DA, Weijs PJM, et al. Defining anabolic resistance: implications for delivery of clinical care nutrition. Curr Opin Crit Care. 2018;24:124–30.

    Article  PubMed  Google Scholar 

  54. Drummond MJ, Dickinson JM, Fry CS, et al. Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults. Am J Physiol Endocrinol Metab. 2012;302:E1113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Visser M, Deurenberg P, van Staveren WA, et al. Resting metabolic rate and diet-induced thermogenesis in young and elderly subjects: relationship with body composition, fat distribution, and physical activity level. Am J Clin Nutr. 1995;61:772–8.

    Article  CAS  PubMed  Google Scholar 

  56. Roberts SB, Fuss P, Heyman MB, et al. Influence of age on energy requirements. Am J Clin Nutr. 1995;62:1053s–8s.

    Article  CAS  PubMed  Google Scholar 

  57. Golden MH, Waterlow JC. Total protein synthesis in elderly people: a comparison of results with [15N]glycine and [14C]leucine. Clin Sci Mol Med. 1977;53:277–88.

    CAS  PubMed  Google Scholar 

  58. Morais JA, Ross R, Gougeon RJ, et al. Distribution of Protein Turnover Changes with Age in Humans as Assessed by Whole-Body Magnetic Resonance Image Analysis to Quantify Tissue Volumes. J Nutr. 2000;130:784–91.

    Article  CAS  PubMed  Google Scholar 

  59. Uauy R, Winterer JC, Bilmazes C, et al. The changing pattern of whole body protein metabolism in aging humans. J Gerontol. 1978;33:663–71.

    Article  CAS  PubMed  Google Scholar 

  60. Hirsch KR, Church DD, Kim I-Y, et al. Comparison of basal whole-body protein kinetics and muscle protein synthesis between young and older adults. Physiol Rep. 2020;8:e14633–e14633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Katsanos CS, Kobayashi H, Sheffield-Moore M, et al. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr. 2005;82:1065–73.

    Article  CAS  PubMed  Google Scholar 

  62. Volpi E, Sheffield-Moore M, Rasmussen BB, et al. Basal Muscle Amino Acid Kinetics and Protein Synthesis in Healthy Young and Older Men. JAMA. 2001;286:1206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wolfe RR, Chinkes DL. Isotope tracers in metabolic research: principles and practice of kinetic analysis. Hoboken: Wiley-Liss; 2005.

    Google Scholar 

  64. Breen L, Phillips SM. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the “anabolic resistance” of ageing. Nutr Metab (Lond). 2011;8:68.

    Article  CAS  Google Scholar 

  65. Moore DR, Churchward-Venne TA, Witard O, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2015;70:57–62.

    Article  CAS  PubMed  Google Scholar 

  66. Breen L, Stokes KA, Churchward-Venne TA, et al. Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab. 2013;98:2604–12.

    Article  CAS  PubMed  Google Scholar 

  67. Chevalier S, Gougeon R, Choong N, et al. Influence of adiposity in the blunted whole-body protein anabolic response to insulin with aging. J Gerontol A Biol Sci Med Sci. 2006;61:156–64.

    Article  PubMed  Google Scholar 

  68. Volpi E, Mittendorfer B, Wolf SE, et al. Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction. Am J Physiol. 1999;277:E513–20.

    CAS  PubMed  Google Scholar 

  69. Boirie Y, Gachon P, Beaufrère B. Splanchnic and whole-body leucine kinetics in young and elderly men. Am J Clin Nutr. 1997;65:489–95.

    Article  CAS  PubMed  Google Scholar 

  70. Katsanos CS, Kobayashi H, Sheffield-Moore M, et al. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291:E381–7.

    Article  CAS  PubMed  Google Scholar 

  71. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12:86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Phillips SM, Chevalier S, Leidy HJ. Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab. 2016;41:565–72.

    Article  CAS  PubMed  Google Scholar 

  73. Arends J, Bachmann P, Baracos V, et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr. 2017;36:11–48.

    Article  PubMed  Google Scholar 

  74. Purcell SA, Elliott SA, Baracos VE, et al. Key determinants of energy expenditure in cancer and implications for clinical practice. Eur J Clin Nutr. 2016;70:1230–8.

    Article  CAS  PubMed  Google Scholar 

  75. Baracos VE. Cancer-associated malnutrition. Eur J Clin Nutr. 2018;72:1255–9.

    Article  PubMed  Google Scholar 

  76. Fearon KC, Hansell DT, Preston T, et al. Influence of whole body protein turnover rate on resting energy expenditure in patients with cancer. Cancer Res. 1988;48:2590–5.

    CAS  PubMed  Google Scholar 

  77. Bosaeus I, Daneryd P, Svanberg E, et al. Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int J Cancer. 2001;93:380–3.

    Article  CAS  PubMed  Google Scholar 

  78. Dworzak F, Ferrari P, Gavazzi C, et al. Effects of cachexia due to cancer on whole body and skeletal muscle protein turnover. Cancer. 1998;82:42–8.

    Article  CAS  PubMed  Google Scholar 

  79. Lundholm K, Bylund AC, Holm J, et al. Skeletal muscle metabolism in patients with malignant tumor. Eur J Cancer. 1976;12:465–73.

    Article  CAS  PubMed  Google Scholar 

  80. Fearon KC, Falconer JS, Slater C, et al. Albumin synthesis rates are not decreased in hypoalbuminemic cachectic cancer patients with an ongoing acute-phase protein response. Ann Surg. 1998;227:249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dev R, Bruera E, Dalal S. Insulin resistance and body composition in cancer patients. Ann Oncol 2018;29:ii18-ii26.

  82. Yoshikawa T, Noguchi Y, Matsumoto A. Effects of tumor removal and body weight loss on insulin resistance in patients with cancer. Surgery. 1994;116:62–6.

    CAS  PubMed  Google Scholar 

  83. Ljungqvist O, Jonathan E. Rhoads lecture 2011: Insulin resistance and enhanced recovery after surgery. JPEN J Parenter Enteral Nutr. 2012;36:389–98.

    Article  CAS  Google Scholar 

  84. Engelen M, Safar AM, Bartter T, et al. High anabolic potential of essential amino acid mixtures in advanced nonsmall cell lung cancer. Ann Oncol. 2015;26:1960–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Engelen MP, van der Meij BS, Deutz NE. Protein anabolic resistance in cancer: does it really exist? Curr Opin Clin Nutr Metab Care. 2016;19:39–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Deutz NE, Safar A, Schutzler S, et al. Muscle protein synthesis in cancer patients can be stimulated with a specially formulated medical food. Clin Nutr. 2011;30:759–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Muscaritoli M, Arends J, Aapro M. From guidelines to clinical practice: a roadmap for oncologists for nutrition therapy for cancer patients. Ther Adv Med Oncol. 2019;11:1758835919880084–1758835919880084.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Joanisse S, Lim C, McKendry J, et al. Recent advances in understanding resistance exercise training-induced skeletal muscle hypertrophy in humans. F1000Res. 2020;9:141.

    Article  CAS  Google Scholar 

  89. Young VR. Amino acids and proteins in relation to the nutrition of elderly people. Age Ageing. 1990;19:S10-24.

    Article  CAS  PubMed  Google Scholar 

  90. Hill GL, Douglas RG, Schroeder D. Metabolic basis for the management of patients undergoing major surgery. World J Surg. 1993;17:146–53.

    Article  CAS  PubMed  Google Scholar 

  91. Phillips BE, Smith K, Liptrot S, et al. Effect of colon cancer and surgical resection on skeletal muscle mitochondrial enzyme activity in colon cancer patients: a pilot study. J Cachexia Sarcopenia Muscle. 2013;4:71–7.

    Article  PubMed  Google Scholar 

  92. Hill GL, Jonathan E. Rhoads Lecture. Body composition research: implications for the practice of clinical nutrition. JPEN J Parenter Enteral Nutr. 1992;16:197–218.

    Article  CAS  PubMed  Google Scholar 

  93. • Bye A, Sjøblom B, Wentzel-Larsen T, et al. Muscle mass and association to quality of life in non-small cell lung cancer patients. J Cachexia Sarcopenia Muscle. 2017;8:759–67. Computed tomography data from 734 patients with stage IIIB/IV non-small cell lung cancer were pooled to examine the impact of skeletal muscle index and radiodensity on patient-reported outocmes. The findings suggest that there is a skeletal muscle index breakpoint by which function deteriorates and that this breakpoint differs based on sex.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Howard R, Yin YS, McCandless L, et al. Taking Control of Your Surgery: Impact of a Prehabilitation Program on Major Abdominal Surgery. J Am Coll Surg. 2019;228:72–80.

    Article  PubMed  Google Scholar 

  95. Gillis C, Li C, Lee L, et al. Prehabilitation versus Rehabilitation: A Randomized Control Trial in Patients Undergoing Colorectal Resection for Cancer. Anesthesiology. 2014;121:937–47.

    Article  PubMed  Google Scholar 

  96. Sullivan ES, Rice N, Kingston E, et al. A national survey of oncology survivors examining nutrition attitudes, problems and behaviours, and access to dietetic care throughout the cancer journey. Clin Nutr ESPEN. 2021;41:331–9.

    Article  PubMed  Google Scholar 

  97. Gillis C, Gill M, Gramlich L, Culos-Reed SN, Nelson G, Ljungqvist O, Carli F, Fenton TR. Patients’ perspectives of prehabilitation as an extension of Enhanced Recovery After Surgery protocols. Can J Surg. 2021. https://doi.org/10.1503/cjs.014420.

  98. •• Martin L, Hopkins J, Malietzis G, et al. Assessment of Computed Tomography (CT)-Defined Muscle and Adipose Tissue Features in Relation to Short-Term Outcomes After Elective Surgery for Colorectal Cancer: A Multicenter Approach. Ann Surg Oncol. 2018;25:2669–80. Pre-surgical computed tomography images of 1139 colorectal cancer patients revealed that sarcopenia, myosteatosis, and visceral obesity were common among these patients and predicted variable surgical outcomes.

    Article  PubMed  Google Scholar 

  99. Gillis C, Fenton TR, Sajobi TT, et al. Trimodal prehabilitation for colorectal surgery attenuates post-surgical losses in lean body mass: A pooled analysis of randomized controlled trials. Clin Nutr. 2019;38:1053–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsia Gillis.

Ethics declarations

Conflict of Interest

SMP reports grants from Dairy Farmers of Canada, grants from Alliance for Potato Research and Education, other from Enhanced Recovery, outside the submitted work; in addition, Dr. Phillips has a patent multi-ingredient supplement issued to Exerkine (unrelated to this work). CG has no competing interest to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Prehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillis, C., Phillips, S.M. Protein for the Pre-Surgical Cancer Patient: a Narrative Review. Curr Anesthesiol Rep 12, 138–147 (2022). https://doi.org/10.1007/s40140-021-00494-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-021-00494-x

Keywords

Navigation