Skip to main content
Log in

Polymeric Nanoparticles for Drug Delivery in Neurological Diseases

  • Nanoparticle-based Drug Delivery (R Banerjee, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

This review aims at describing the state of the art concerning the design of polymeric nanoparticles for the treatment of neurological diseases. The most important methods of polymeric nanoparticle preparation as well as the required properties for neurological diseases have been summarized.

Recent Findings

Many studies report the design of polymeric nanoparticles to treat diseases such as brain tumors, neurodegenerative and neuroinflammatory diseases. However, none of the engineered nanoparticles have reached clinical trials. The reasons of the lack of translation of laboratory results have been analyzed. Many limiting steps can be attributed to the lack of reproducible studies, some controversial results or the absence of current regulations concerning systems at the nanoscale. However, recent studies indicate that these drawbacks can be overcome.

Summary

It is expected that in the near future, some of the engineered nanoparticles that are under development will become novel drug delivery systems to cross the BBB, giving an efficient treatment to currently untreatable and devastating neurological diseases such as glioblastoma and Alzehimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andlin-Sobocki P, Jönsson B, Wittchenc H et al (2005) Cost of disorders of the brain in Europe. Eur J Neurol 12(Suppl. 1):1–27. doi:10.1016/j.euroneuro.2011.08.008

    Article  PubMed  Google Scholar 

  2. Olesen J, Gustavsson A, Svensson M, on behalf of theCDBE2010 study group and the European Brain Council et al (2012) The economic cost of brain disorders in Europe. Eur J Neurol 19:155–162. doi:10.1111/j.1468-1331.2011.03590.x

    Article  CAS  PubMed  Google Scholar 

  3. DiLuca M, Olesen J (2014) The cost of brain diseases: a burden or a challenge? Neuron 82(18):1205–1209. doi:10.1016/j.neuron.2014.05.044

    Article  CAS  PubMed  Google Scholar 

  4. Patel T, Zhou J, Piepmeier JM et al (2012) Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Del Rev 64:701–705. doi:10.1016/j.addr.2011.12.006

    Article  CAS  Google Scholar 

  5. Goyal K, Koul V, Singh Y et al (2014) Targeted drug delivery to central nervous system (CNS) for the treatment of neurodegenerative disorders: trends and advances. Cent Nerv Syst Agents Med Chem 14:43–59. doi:10.2174/1871524914666141030145948

    Article  CAS  PubMed  Google Scholar 

  6. Wu L, Li X, Janagam DL et al (2014) Overcoming the blood–brain barrier in chemotherapy treatment of pediatric brain tumors. Pharm Res 31:531–540. doi:10.1007/s11095-013-1196-z

    Article  CAS  PubMed  Google Scholar 

  7. • Cheng Y, Morshed RA, Auffinger B et al (2014) Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 66:42–57. doi:10.1016/j.addr.2013.09.006. Description of the properties that nanoparticles (polymeric and inorganic) must possess to be useful for the treatment of tumors.

  8. Das S, Carnicer-Lombarte A, Fawcett J et al (2016) Bio-inspired nano tools for neuroscience. Prog Neurobiol 142:1–22. doi:10.1016/j.pneurobio.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  9. Kabanov AV, Gendelman HE (2007) Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci 32:1054–1082. doi:10.1016/j.progpolymsci.2007.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cupaioli FA, Zucca FA, Boraschi D et al (2014) Engineered nanoparticles. How brain friendly is this new guest? Prog Neurobiol 119–120:20–38. doi:10.1016/j.pneurobio.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  11. •• Kreuter J (2014) Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 71:2–14. doi:10.1016/j.addr.2013.08.008. Review highlighting the properties that polymeric nanoparticles must possess to cross the BBB and be used as advanced drug delivery systems to treat brain diseases.

  12. Encyclopedia of Nanoscience and Nanotechnology, edited by Harl Singh Nalwa, 15-volumes set; ISBN: 1-58883-001-2 (vols. 1-10, 2004) plus ISBN: 1-58883-159-0 (vols. 11–25, 2011)

  13. James S (2006) Encyclopedia of pharmaceutical technology. CRC Press, Taylor and Francis Group, Boca Raton. ISBN 9780849393990

    Google Scholar 

  14. Tadros ThF, Izquierdo P, Esquena J et al (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108–109:303–318. doi:10.1016/j.cis.2003.10.023

    Article  CAS  PubMed  Google Scholar 

  15. Soppimath KS, Aminabhavi TM, Kulkarni AR et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20. doi:10.1016/S0168-3659(00)00339-4

    Article  CAS  PubMed  Google Scholar 

  16. Pinto Reis C, Neufeld NJ, Keene FR et al (2009) Anionic PAMAM dendrimers as drug delivery vehicles for transition metal-based anticancer drugs. J Inorg Chem 103:373–380. doi:10.1016/j.jinorgbio.2008.11.014

    Google Scholar 

  17. Jain KK (2012) Nanobiotechnology-based strategies for crossing the blood–brain barrier. Nanomedicine 7(8):1225–1233. doi:10.2217/nnm.12.86

    Article  CAS  PubMed  Google Scholar 

  18. Neha B, Ganesh B, Preeti K (2013) Drug delivery to the brain using polymeric nanoparticles: a review. Int J Pharm Life Sci 2(3):107–132. doi:10.3329/ijpls.v2i3.15457

    Article  Google Scholar 

  19. Lee K, Solanki A, Kim JD et al (2016) Nanomedicine: dynamic integration of nanotechnology with biomedical sciences; chapter II and Ellis-Behnke R., a small introduction to the world of nanomedicine; chapter III; and Allhoff R., the coming era of nanomedicine, chapter V. In: Bawa R, Audette GF, Rubinstein I (eds) Handbook of clinical nanomedicine: nanoparticles, imaging, therapy, and clinical applications. Pan Standford Publishing, Singapore

    Google Scholar 

  20. Vauthier C, Dubernet C, Fattal E et al (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55:519–548. doi:10.1016/S0169-409X(03)00041-3

    Article  CAS  PubMed  Google Scholar 

  21. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26(5):1025–1058. doi:10.1007/s11095-008-9800-3

    Article  CAS  PubMed  Google Scholar 

  22. Danhier F, Ansorena E, Silva JM et al (2012) PLGA-based nanoparticles: AN overview of biomedical applications. J Control Release 161:505–522. doi:10.1016/j.jconrel.2012.01.043

    Article  CAS  PubMed  Google Scholar 

  23. Anton N, Benoit J-P, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsions—a review. J Control Release 128(3):185–199. doi:10.1016/j.jconrel.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  24. Solans C, Solè I (2012) Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci 17:246–254. doi:10.1016/j.cocis.2012.07.003

    Article  CAS  Google Scholar 

  25. • Bazile DV (2014) Nanotechnologies in drug delivery—an industrial perspective. J Drug Deliv Sci Technol 24(1):12–21. doi:10.1016/S1773-2247(14)50002-0. This article gives an industrial point of view of the requirements for polymeric nanoparticles to become novel advanced drug delivery systems.

  26. Lu JM, Wang X, Marin-Muller C et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rew Mol Diag 9(4):325–341. doi:10.1586/erm.09.15

    Article  CAS  Google Scholar 

  27. Ballerini C, Baldi G, Aldinucci A et al (2015) Nanomaterial applications in multiple sclerosis inflamed brain. J Neuroimmune Pharmacol 10:1–13. doi:10.1007/s11481-015-9588-y

    Article  PubMed  Google Scholar 

  28. •• Dobrovolskaia MA, McNeil S (2013) Handbook of immunological properties of engineered nanomaterials. Frontiers in nanobiomedical research. SAIC-Frederick, Inc., Frederick. This book highlights the properties that engineered nanoparticles must have in order to avoid the detection by the immune system and reach to the target organ, focusing on the interactions with blood components.

  29. Costantino L, Boraschi D (2012) Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today 17(7/8):367–380. doi:10.1016/j.drudis.2011.10.028

    Article  CAS  PubMed  Google Scholar 

  30. He C, Hu Y, Yin L et al (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666. doi:10.1016/j.biomaterials.2010.01.065

    Article  CAS  PubMed  Google Scholar 

  31. Fornaguera C, Dols-Perez A, Calderó G, García-Celma MJ, Camarasa J, Solans C (2015) PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. J Control Release 10(211):134–143. doi:10.1016/j.jconrel.2015.06.002

    Article  CAS  Google Scholar 

  32. Pardridge WM (2002) Blood–brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins. Adv Exp Med Biol 513:397–430

    Article  CAS  PubMed  Google Scholar 

  33. Bravo-Osua I, Vauthier C, Farabollini A et al (2007) Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 28(13):2233–2243. doi:10.1016/j.biomaterials.2007.01.005

    Article  CAS  Google Scholar 

  34. Sharma D, Sharma RK, Sharma N et al (2015) Nose-to-brain delivery of PLGA-diazepam nanoparticles. AAPS PharmSciTech 16(5):1108–1121. doi:10.1208/s12249-015-0294-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cabral H, Kataoka K (2014) Progress of drug-loaded polymeric micelles into clinical studies. J Control Release 190:465–476. doi:10.1016/j.jconrel.2014.06.042

    Article  CAS  PubMed  Google Scholar 

  36. Guo J, Gao X, Su L et al (2011) Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020. doi:10.1016/j.biomaterials.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  37. Reddy MK, Labhasetwar V (2009) Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J. 23:1384–1395. doi:10.1096/fj.08-116947

    Article  CAS  PubMed  Google Scholar 

  38. Alyautdin R, Khalin I, Nafeeza MI et al (2014) Nanoscale drug delivery systems and the blood–brain barrier. Int J Nanomed 9:795–811. doi:10.2147/IJN.S52236

    CAS  Google Scholar 

  39. Hu K, Shi Y, Jiang W et al (2011) Lactoferrin conjugated PEGPLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm 415:273–283. doi:10.1016/j.ijpharm.2011.05.062

    Article  CAS  PubMed  Google Scholar 

  40. Papa S, Ferrari R, De Paola M et al (2014) Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J Control Release 174:15–26. doi:10.1016/j.jconrel.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  41. Klyachko NL, Haney MJ, Zhao Y (2013) Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins. Nanomedicine 9(9):1403–1422. doi:10.2217/nnm.13.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lemos H, Huang L, Chandler PR et al (2014) Activating of the STING adaptor attenuates experimental autoimmune encephalomyelitis. J Immunol 192:5571–5578. doi:10.4049/jimmunol.1303258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tosi G, Vergoni AV, Ruozi B et al (2010) Sialic acid and glycopeptides conjugated PLGA nanoparticles for central nervous system targeting: in vivo pharmacological evidence and biodistribution. J Control Release 145:49–57. doi:10.1016/j.jconrel.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  44. Getts DR, Terry RL, Getts MT et al (2014) Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med 6:219ra7. doi:10.1126/scitranslmed.3007563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kreuter J (1994) Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet 19:253–256. doi:10.1007/BF03188928

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from Spanish Ministry of Economy and Competitiveness, MINECO (Grant CTQ 2011-29336-CO3-01 and CTQ2014-52687), Generalitat de Catalunya (Grant 2014SGR-1655) and CIBER-BBN is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fornaguera.

Ethics declarations

Conflict of Interest

C Fornaguera and C. Solans declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Nanoparticle-based Drug Delivery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornaguera, C., Solans, C. Polymeric Nanoparticles for Drug Delivery in Neurological Diseases. Curr Pathobiol Rep 4, 189–197 (2016). https://doi.org/10.1007/s40139-016-0118-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-016-0118-2

Keywords

Navigation