Skip to main content
Log in

Nanoparticle delivery for central nervous system diseases and its clinical application

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the treatment of central nervous system (CNS) diseases such as glioma, Alzheimer’s disease (AD) and Parkinson’s disease (PD), drugs are expected to reach specific areas of the brain to achieve the desired effect. Although a growing number of therapeutic targets have been identified in preclinical studies, the ones that can ultimately be used in the clinic are limited. Therefore, the research process and clinical application of drugs for treating CNS diseases are still large challenges. Physiological barriers such as the blood–brain barrier (BBB) act as selective permeable membranes, allowing only certain molecules to enter the brain; this barrier is the major obstacle restricting the arrival of most drugs to brain lesions. Recently, nanoparticles, including lipid-based, cell-derived biomimetic, polymeric and inorganic nanoparticles, have gained increasing attention because of their ability to cross physiological barriers, and could play an important role as delivery carriers and immunomodulators. Additionally, clinical applications of nanoparticles in CNS diseases are underway. This review focuses on the progress of current research on the use of nanoparticles for the treatment of CNS diseases to provide additional insight into the treatment of CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nance, E.; Pun, S. H.; Saigal, R.; Sellers, D. L. Drug delivery to the central nervous system. Nat. Rev. Mater. 2022, 7, 314–331.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp, R.; Mason, W. P.; Van Den Bent, M. J.; Weller, M.; Fisher, B.; Taphoorn, M. J. B.; Belanger, K.; Brandes, A. A.; Marosi, C.; Bogdahn, U. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996.

    Article  CAS  PubMed  Google Scholar 

  3. Kasina, V.; Mownn, R. J.; Bahal, R.; Sartor, G. C. Nanoparticle delivery systems for substance use disorder. Neuropsychopharmacology 2022, 47, 1431–1439.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pardridge, W. M. Drug targeting to the brain. Pharm. Res. 2007, 24, 1733–1744.

    Article  CAS  PubMed  Google Scholar 

  5. Pardridge, W. M. Molecular biology of the blood-brain barrier. Mol. Biotechnol. 2005, 30, 57–69.

    Article  CAS  PubMed  Google Scholar 

  6. Popovic, N.; Brundin, P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int. J. Pharm. 2006, 314, 120–126.

    Article  CAS  PubMed  Google Scholar 

  7. Aloe, L.; Luisa Rocco, M.; Omar Balzamino, B.; Micera, A. Nerve growth factor: A focus on neuroscience and therapy. Curr. Neuropharmacol. 2015, 13, 294–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuai, R.; Ochyl, L. J.; Bahjat, K. S.; Schwendeman, A.; Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 2017, 16, 489–496.

    Article  CAS  PubMed  Google Scholar 

  9. Silva, G. A. Introduction to nanotechnology and its applications to medicine. Surg. Neurol. 2004, 61, 216–220.

    Article  PubMed  Google Scholar 

  10. Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthet. Surg. 2010, 3, 32–33.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chhabra, R.; Tosi, G.; Grabrucker, A. M. Emerging use of nanotechnology in the treatment of neurological disorders. Curr. Pharm. Des. 2015, 21, 3111–3130.

    Article  CAS  PubMed  Google Scholar 

  12. Wadhwa, G.; Krishna, K. V.; Dubey, S. K.; Taliyan, R. Development and validation of RP-HPLC method for quantification of repaglinide in mPEG-PCL polymeric nanoparticles: QbD-driven optimization, force degradation study, and assessment of in vitro release mathematic modeling. Microchem. J. 2021, 168, 106491.

    Article  CAS  Google Scholar 

  13. Rufino-Ramos, D.; Albuquerque, P. R.; Carmona, V.; Perfeito, R.; Nobre, R. J.; de Almeida, L. P. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J. Control. Release 2017, 262, 247–258.

    Article  CAS  PubMed  Google Scholar 

  14. Sampson, J. H.; Maus, M. V.; June, C. H. Immunotherapy for brain tumors. J. Clin. Oncol. 2017, 35, 2450–2456.

    Article  CAS  PubMed  Google Scholar 

  15. de Robles, P.; Fiest, K. M.; Frolkis, A. D.; Pringsheim, T.; Atta, C.; St. Germaine-Smith, C.; Day, L.; Lam, D.; Jette, N. The worldwide incidence and prevalence of primary brain tumors: A systematic review and meta-analysis. Neuro Oncol. 2015, 17, 776–783

    Article  PubMed  Google Scholar 

  16. Patel, A. P.; Tirosh, I.; Trombetta, J. J.; Shalek, A. K.; Gillespie, S. M.; Wakimoto, H.; Cahill, D. P.; Nahed, B. V.; Curry, W. T.; Martuza, R. L. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014, 344, 1396–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hegde, M.; Corder, A.; Chow, K. K. H.; Mukherjee, M.; Ashoori, A.; Kew, Y.; Zhang, Y. J.; Baskin, D. S.; Merchant, F. A.; Brawley, V. S. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol. Ther. 2013, 21, 2087–2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grada, Z.; Hegde, M.; Byrd, T.; Shaffer, D. R.; Ghazi, A.; Brawley, V. S.; Corder, A.; Schönfeld, K.; Koch, J.; Dotti, G. et al. TanCAR: A novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol. Ther. Nucl. Acids 2013, 2, e105.

    Article  Google Scholar 

  19. Chang, A. L.; Miska, J.; Wainwright, D. A.; Dey, M.; Rivetta, C. V.; Yu, D.; Kanojia, D.; Pituch, K. C.; Qiao, J.; Pytel, P. et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 2016, 76, 5671–5682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taliyan, R.; Kakoty, V.; Sarathlal, K. C.; Kharavtekar, S. S.; Karennanavar, C. R.; Choudhary, Y. K.; Singhvi, G.; Riadi, Y.; Dubey, S. K.; Kesharwani, P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease. J. Control. Release 2022, 343, 528–550.

    Article  CAS  PubMed  Google Scholar 

  21. Iturria-Medina, Y.; Sotero, R. C.; Toussaint, P. J.; Mateos-Pérez, J. M.; Evans, A. C.; The Alzheimer’s Disease Neuroimaging Initiative. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 2016, 7, 11934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ascherio, A.; Schwarzschild, M. A. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol. 2016, 15, 1257–1272.

    Article  PubMed  Google Scholar 

  23. Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron 2003, 39, 889–909.

    Article  CAS  PubMed  Google Scholar 

  24. Spillantini, M. G.; Schmidt, M. L.; Lee, V. M. Y.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. α-Synuclein in Lewy bodies. Nature 1997, 388, 839–840.

    Article  CAS  PubMed  Google Scholar 

  25. Volles, M. J.; Lansbury, P. T. Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 2002, 41, 4595–4602.

    Article  CAS  PubMed  Google Scholar 

  26. Roberts, H. L.; Brown, D. R. Seeking a mechanism for the toxicity of oligomeric α-synuclein. Biomolecules 2015, 5, 282–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Filippi, M., Bar-Or, A., Piehl, F., Preziosa, P., Solari, A., Vukusic, S., et al. Multiple sclerosis. Nat. Rev. Dis. Primers 2018, 4, 43.

    Article  PubMed  Google Scholar 

  28. Zhang, S. S.; Zhou, Y.; Li, R. Q.; Chen, Z.; Fan, X. Advanced drug delivery system against ischemic stroke. J. Control. Release 2022, 344, 173–201.

    Article  CAS  PubMed  Google Scholar 

  29. Krishnamurthi, R. V.; Moran, A. E.; Forouzanfar, M. H.; Bennett, D. A.; Mensah, G. A.; Lawes, C. M. M.; Barker-Collo, S.; Connor, M.; Roth, G. A.; Sacco, R. et al. The global burden of hemorrhagic stroke: A summary of findings from the GBD 2010 study. Glob. Heart 2014, 9, 101–106.

    Article  PubMed  Google Scholar 

  30. Wasserman, J. K.; Schlichter, L. C. Minocycline protects the blood-brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp. Neurol. 2007, 207, 227–237.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, C. M.; Yamaguchi, M.; Kusaka, G.; Schonholz, C.; Nanda, A.; Zhang, J. H. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 2004, 24, 419–431.

    Article  CAS  PubMed  Google Scholar 

  32. Tang, J. P.; Liu, J.; Zhou, C. M.; Ostanin, D.; Grisham, M. B.; Neil Granger, D.; Zhang, J. H. Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J. Neurochem. 2005, 94, 1342–1350.

    Article  CAS  PubMed  Google Scholar 

  33. The Hemorrhagic Stroke Academia Industry (HEADS) Roundtable Participants. Unmet needs and challenges in clinical research of intracerebral hemorrhage. Stroke 2018, 49, 1299–1307.

    Article  PubMed Central  Google Scholar 

  34. Cassidy, J. D.; Carroll, L. J.; Peloso, P. M.; Borg, J.; Von Holst, H.; Holm, L.; Kraus, J.; Coronado, V. G.; WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Incidence, risk factors and prevention of mild traumatic brain injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med. 2004, 36, 28–60.

    Article  Google Scholar 

  35. Blennow, K.; Brody, D. L.; Kochanek, P. M.; Levin, H.; McKee, A.; Ribbers, G. M.; Yaffe, K.; Zetterberg, H. Traumatic brain injuries. Nat. Rev. Dis. Primers 2016, 2, 16084.

    Article  PubMed  Google Scholar 

  36. Smith, D. H.; Hicks, R.; Povlishock, J. T. Therapy development for diffuse axonal injury. J. Neurotraum. 2013, 30, 307–323.

    Article  Google Scholar 

  37. Whiteneck, G. G.; Cuthbert, J. P.; Corrigan, J. D.; Bogner, J. A. Risk of negative outcomes after traumatic brain injury: A statewide population-based survey. J. Head Trauma Rehab. 2016, 31, E43–E54.

    Article  Google Scholar 

  38. Gardner, R. C.; Yaffe, K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell. Neurosci. 2015, 66, 75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Misra, A.; Ganesh, S.; Shahiwala, A.; Shah, S. P. Drug delivery to the central nervous system: A review. J. Pharm. Pharm. Sci 2003, 6, 252–273.

    CAS  PubMed  Google Scholar 

  40. Schwartz, S. Jr. Unmet needs in developing nanoparticles for precision medicine. Nanomedicine (Lond.) 2017, 12, 271–274.

    Article  CAS  PubMed  Google Scholar 

  41. von Roemeling, C.; Jiang, W.; Chan, C. K.; Weissman, I. L.; Kim, B. Y. S. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol. 2017, 35, 159–171.

    Article  CAS  PubMed  Google Scholar 

  42. Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M. H.; Wallgard, E.; Niaudet, C.; He, L. Q.; Norlin, J.; Lindblom, P.; Strittmatter, K. et al. Pericytes regulate the blood-brain barrier. Nature 2010, 468, 557–561.

    Article  CAS  PubMed  Google Scholar 

  43. Bell, R. D.; Winkler, E. A.; Sagare, A. P.; Singh, I.; LaRue, B.; Deane, R.; Zlokovic, B. V. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010, 68, 409–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sweeney, M. D.; Ayyadurai, S.; Zlokovic, B. V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci. 2016, 19, 771–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abbott, N. J.; Patabendige, A. A. K.; Dolman, D. E. M.; Yusof, S. R.; Begley, D. J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010, 37, 13–25.

    Article  CAS  PubMed  Google Scholar 

  46. Vanlandewijck, M.; He, L. Q.; Mäe, M. A.; Andrae, J.; Ando, K.; Del Gaudio, F.; Nahar, K.; Lebouvier, T.; Laviña, B.; Gouveia, L. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 2018, 554, 475–480.

    Article  CAS  PubMed  Google Scholar 

  47. Copeland, C.; Stabenfeldt, S. E. Leveraging the dynamic blood-brain barrier for central nervous system nanoparticle-based drug delivery applications. Curr. Opin. Biomed. Eng. 2020, 14, 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ding, S. C.; Khan, A. I.; Cai, X. L.; Song, Y.; Lyu, Z. Y.; Du, D.; Dutta, P.; Lin, Y. H. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today (Kidlington) 2020, 37, 112–125.

    Article  CAS  PubMed  Google Scholar 

  49. Pandit, R.; Chen, L. Y.; Götz, J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv. Drug Deliv. Rev. 2020, 165–166, 1–14.

    Article  PubMed  Google Scholar 

  50. Pinheiro, R. G. R.; Granja, A.; Loureiro, J. A.; Pereira, M. C.; Pinheiro, M.; Neves, A. R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci. 2020, 148, 105314.

    Article  CAS  PubMed  Google Scholar 

  51. Fernandes, F.; Dias-Teixeira, M.; Delerue-Matos, C.; Grosso, C. Critical review of lipid-based nanoparticles as carriers of neuroprotective drugs and extracts. Nanomaterials (Basel) 2021, 11, 563.

    Article  CAS  PubMed  Google Scholar 

  52. Pardridge, W. M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1959–1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, Y.; Liu, L. H. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev. 2012, 64, 640–665.

    Article  CAS  PubMed  Google Scholar 

  54. Kou, L. F.; Bhutia, Y. D.; Yao, Q.; He, Z. G.; Sun, J.; Ganapathy, V. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front. Pharmacol. 2018, 9, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Johnsen, K. B.; Bak, M.; Melander, F.; Thomsen, M. S.; Burkhart, A.; Kempen, P. J.; Andresen, T. L.; Moos, T. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J. Control. Release 2019, 295, 237–249.

    Article  CAS  PubMed  Google Scholar 

  56. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

    Article  CAS  PubMed  Google Scholar 

  57. Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A. M.; Sindhwani, S.; Zhang, Y. W.; Chen, Y. Y.; MacMillan, P.; Chan, W. C. W. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018, 12, 8423–8435.

    Article  CAS  PubMed  Google Scholar 

  58. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Scheetz, L.; Park, K. S.; Li, Q.; Lowenstein, P. R.; Castro, M. G.; Schwendeman, A.; Moon, J. J. Engineering patient-specific cancer immunotherapies. Nat. Biomed. Eng. 2019, 3, 768–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ho, L. W. C.; Liu, Y.; Han, R. F.; Bai, Q. Q.; Choi, C. H. J. Nano-cell interactions of non-cationic bionanomaterials. Acc. Chem. Res. 2019, 52, 1519–1530.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, L.; Wang, Y.; Yang, D. J.; Huang, W. J.; Hao, P. Y.; Feng, S.; Appelhans, D.; Zhang, T. H.; Zan, X. J. Shape effect of nanoparticles on tumor penetration in monolayers versus spheroids. Mol. Pharm. 2019, 16, 2902–2911.

    Article  CAS  PubMed  Google Scholar 

  62. Hoshyar, N.; Gray, S.; Han, H. B.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.) 2016, 11, 673–692.

    Article  CAS  PubMed  Google Scholar 

  63. Shang, L.; Nienhaus, K.; Nienhaus, G. U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014, 12, 5.

    Article  Google Scholar 

  64. Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Foroozandeh, P.; Aziz, A. A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13, 339.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Garbayo, E.; Ansorena, E.; Blanco-Prieto, M. J. Drug development in Parkinson’s disease: From emerging molecules to innovative drug delivery systems. Maturitas 2013, 76, 272–278.

    Article  CAS  PubMed  Google Scholar 

  67. Lee Ventola, C. Progress in nanomedicine: Approved and investigational nanodrugs. P T 2017, 42, 742–755.

    PubMed  PubMed Central  Google Scholar 

  68. Li, Z.; Jiang, H.; Xu, C. M.; Gu, L. W. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids 2015, 43, 153–164.

    Article  CAS  Google Scholar 

  69. Ross, K. A.; Brenza, T. M.; Binnebose, A. M.; Phanse, Y.; Kanthasamy, A. G.; Gendelman, H. E.; Salem, A. K.; Bartholomay, L. C.; Bellaire, B. H.; Narasimhan, B. Nano-enabled delivery of diverse payloads across complex biological barriers. J. Control. Release 2015, 219, 548–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sabnis, S.; Kumarasinghe, E. S.; Salerno, T.; Mihai, C.; Ketova, T.; Senn, J. J.; Lynn, A.; Bulychev, A.; McFadyen, I.; Chan, J. et al. A novel amino lipid series for mRNA delivery: Improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 2018, 26, 1509–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fenton, O. S.; Olafson, K. N.; Pillai, P. S.; Mitchell, M. J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328.

    Article  Google Scholar 

  72. Fonseca-Santos, B.; Gremião, M. P. D.; Chorilli, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine 2015, 10, 4981–5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jain, S.; Tripathi, S.; Tripathi, P. K. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. J. Drug Delivery Sci. Technol. 2021, 61, 102166.

    Article  CAS  Google Scholar 

  74. Chacko, I. A.; Ghate, V. M.; Dsouza, L.; Lewis, S. A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B Biointerfaces 2020, 195, 111262.

    Article  CAS  PubMed  Google Scholar 

  75. Opatha, S. A. T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020, 12, 855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nasirizadeh, S.; Malaekeh-Nikouei, B. Solid lipid nanoparticles and nanostractured lipid carriers in oral cancer drug delivery. J. Drug Delivery Sci. Technol. 2020, 55, 101458.

    Article  CAS  Google Scholar 

  77. Gettings, S. D.; Lordo, R. A.; Feder, P. I.; Hintze, K. L. A comparison of low volume, draize and in vitro eye irritation test data. II. Oil/water emulsions. Food Chem. Toxicol. 1998, 36, 47–59.

    Article  CAS  PubMed  Google Scholar 

  78. Venkateswarlu, V.; Reddy, P. R. Lipid microspheres as drug delivery systems. Indian J. Pharm. Sci. 2001, 63, 450–458.

    Google Scholar 

  79. Wang, Y. M.; Mesfin, G. M.; Rodríguez, C. A.; Slatter, J. G.; Schuette, M. R.; Cory, A. L.; Higgins, M. J. Venous irritation, pharmacokinetics, and tissue distribution of tirilazad in rats following intravenous administration of a novel supersaturated submicron lipid emulsion. Pharm. Res. 1999, 16, 930–938.

    Article  CAS  PubMed  Google Scholar 

  80. Maher, R.; Moreno-Borrallo, A.; Jindal, D.; Mai, B. T.; Ruiz-Hernandez, E.; Harkin, A. Intranasal polymeric and lipid-based nanocarriers for CNS drug delivery. Pharmaceutics 2023, 15, 746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Prabhu, A.; Jose, J.; Kumar, L.; Salwa, S.; Vijay Kumar, M.; Nabavi, S. M. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: An in vitro and in vivo study. AAPS PharmSciTech 2022, 23, 49.

    Article  CAS  PubMed  Google Scholar 

  82. Vakilinezhad, M. A.; Amini, A.; Akbari Javar, H.; Baha’addini Beigi Zarandi, B. F.; Montaseri, H.; Dinarvand, R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru J. Pharm. Sci. 2018, 26, 165–177.

    Article  CAS  Google Scholar 

  83. Yang, Z. Z.; Li, J. Q.; Wang, Z. Z.; Dong, D. W.; Qi, X. R. Tumortargeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials 2014, 35, 5226–5239.

    Article  CAS  PubMed  Google Scholar 

  84. Gabizon, A.; Isacson, R.; Libson, E.; Kaufman, B.; Uziely, B.; Catane, R.; Ben-Dor, C. G.; Rabello, E.; Cass, Y.; Peretz, T. et al. Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol 1994, 33, 779–786.

    Article  CAS  PubMed  Google Scholar 

  85. Zheng, X. Y.; Shao, X. Y.; Zhang, C.; Tan, Y. Z.; Liu, Q. F.; Wan, X.; Zhang, Q. Z.; Xu, S. M.; Jiang, X. G. Intranasal H102 peptide-loaded liposomes for brain delivery to treat alzheimer’s disease. Pharm. Res. 2015, 32, 3837–3849.

    Article  CAS  PubMed  Google Scholar 

  86. Brambilla, D.; Le Droumaguet, B.; Nicolas, J.; Hashemi, S. H.; Wu, L. P.; Moghimi, S. M.; Couvreur, P.; Andrieux, K. Nanotechnologies for Alzheimer’s disease: Diagnosis, therapy, and safety issues. Nanomedicine 2011, 7, 521–540.

    Article  CAS  PubMed  Google Scholar 

  87. Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release 2002, 83, 273–286.

    Article  CAS  PubMed  Google Scholar 

  88. Budhian, A.; Siegel, S. J.; Winey, K. I. Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles. Int. J. Pharm. 2008, 346, 151–159.

    Article  CAS  PubMed  Google Scholar 

  89. Iwasaki, Y.; Maie, H.; Akiyoshi, K. Cell-specific delivery of polymeric nanoparticles to carbohydrate-tagging cells. Biomacromolecules 2007, 8, 3162–3168.

    Article  CAS  PubMed  Google Scholar 

  90. Rathore, P.; Mahor, A.; Jain, S.; Haque, A.; Kesharwani, P. Formulation development, in vitro and in vivo evaluation of chitosan engineered nanoparticles for ocular delivery of insulin. RSC Adv. 2020, 10, 43629–43639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Madamsetty, V. S.; Tavakol, S.; Moghassemi, S.; Dadashzadeh, A.; Schneible, J. D.; Fatemi, I.; Shirvani, A.; Zarrabi, A.; Azedi, F.; Dehshahri, A. et al. Chitosan: A versatile bio-platform for breast cancer theranostics. J. Control. Release 2022, 341, 733–752.

    Article  CAS  PubMed  Google Scholar 

  92. Brown, S. B.; Wang, L.; Jungels, R. R.; Sharma, B. Effects of cartilage-targeting moieties on nanoparticle biodistribution in healthy and osteoarthritic joints. Acta Biomater. 2020, 101, 469–483.

    Article  CAS  PubMed  Google Scholar 

  93. He, C. B.; Yue, H. M.; Xu, L.; Liu, Y. F.; Song, Y. D.; Tang, C.; Yin, C. H. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomater. 2020, 103, 213–222.

    Article  CAS  PubMed  Google Scholar 

  94. Dubey, S. K.; Kali, M.; Hejmady, S.; Saha, R. N.; Alexander, A.; Kesharwani, P. Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. Eur. J. Pharm. Sci. 2021, 164, 105890.

    Article  CAS  PubMed  Google Scholar 

  95. Surekha, B.; Kommana, N. S.; Dubey, S. K.; Kumar, A. V. P.; Shukla, R.; Kesharwani, P. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surf. B Biointerfaces 2021, 204, 111837.

    Article  CAS  PubMed  Google Scholar 

  96. Kaur, H.; Kesharwani, P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J. Control. Release 2021, 337, 589–611.

    Article  CAS  PubMed  Google Scholar 

  97. Kesharwani, P.; Banerjee, S.; Gupta, U.; Amin, M. C. I. M.; Padhye, S.; Sarkar, F. H.; Iyer, A. K. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater. Today 2015, 18, 565–572.

    Article  CAS  Google Scholar 

  98. Sheikh, A.; Md, S.; Kesharwani, P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J. Control. Release 2021, 340, 221–242.

    Article  CAS  PubMed  Google Scholar 

  99. Yu, Y.; Jiang, X.; Gong, S.; Feng, L.; Zhong, Y.; Pang, Z. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin. Nanoscale 2014, 6, 3250–3258.

    Article  CAS  PubMed  Google Scholar 

  100. Bermudez, H.; Brannan, A. K.; Hammer, D. A.; Bates, F. S.; Discher, D. E. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 2002, 35, 8203–8208.

    Article  CAS  Google Scholar 

  101. Discher, B. M.; Bermudez, H.; Hammer, D. A.; Discher, D. E.; Won, Y. Y.; Bates, F. S. Cross-linked polymersome membranes: Vesicles with broadly adjustable properties. J. Phys. Chem. B 2002, 106, 2848–2854.

    Article  CAS  Google Scholar 

  102. Liu, X. Y.; Li, C.; Lv, J.; Huang, F.; An, Y. L.; Shi, L. Q.; Ma, R. J. Glucose and H2O2 dual-responsive polymeric micelles for the self-regulated release of insulin. ACS Appl. Bio Mater. 2020, 3, 1598–1606.

    Article  CAS  PubMed  Google Scholar 

  103. Misra, S.; Chopra, K.; Sinha, V. R.; Medhi, B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: Preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016, 23, 1434–1443.

    Article  CAS  PubMed  Google Scholar 

  104. Katila, N.; Duwa, R.; Bhurtel, S.; Khanal, S.; Maharjan, S.; Jeong, J. H.; Lee, S.; Choi, D. Y.; Yook, S. Enhancement of blood-brain barrier penetration and the neuroprotective effect of resveratrol. J. Control. Release 2022, 346, 1–19.

    Article  CAS  PubMed  Google Scholar 

  105. Casanova, Y.; Negro, S.; Slowing, K.; García-García, L.; Fernández-Carballido, A.; Rahmani, M.; Barcia, E. Micro- and nano-systems developed for tolcapone in Parkinson’s disease. Pharmaceutics 2022, 14, 1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ganipineni, L. P.; Ucakar, B.; Joudiou, N.; Bianco, J.; Danhier, P.; Zhao, M. N.; Bastiancich, C.; Gallez, B.; Danhier, F.; Préat, V. Magnetic targeting of paclitaxel-loaded poly(lactic-co-glycolic acid)-based nanoparticles for the treatment of glioblastoma. Int. J. Nanomedicine 2018, 13, 4509–4521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kulkarni, S. A.; Feng, S. S. Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine (Lond.) 2011, 6, 377–394.

    Article  CAS  PubMed  Google Scholar 

  108. Geldenhuys, W.; Mbimba, T.; Bui, T.; Harrison, K.; Sutariya, V. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J. Drug Target. 2011, 19, 837–845.

    Article  CAS  PubMed  Google Scholar 

  109. Tosi, G.; Costantino, L.; Rivasi, F.; Ruozi, B.; Leo, E.; Vergoni, A. V.; Tacchi, R.; Bertolini, A.; Vandelli, M. A.; Forni, F. Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J. Control. Release 2007, 122, 1–9.

    Article  CAS  PubMed  Google Scholar 

  110. Rao, K. S.; Reddy, M. K.; Horning, J. L.; Labhasetwar, V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 2008, 29, 4429–4438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vio, V.; Marchant, M. J.; Araya, E.; Kogan, M. J. Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr. Pharm. Des. 2017, 23, 1916–1926.

    Article  CAS  PubMed  Google Scholar 

  112. Zare, L.; Yaraki, M. T.; Speranza, G.; Najafabadi, A. H.; Shourangiz-Haghighi, A.; Nik, A. B.; Manshian, B. B.; Saraiva, C.; Soenen, S. J.; Kogan, M. J. et al. Gold nanostructures: Synthesis, properties, and neurological applications. Chem. Soc. Rev. 2022, 51, 2601–2680.

    Article  CAS  PubMed  Google Scholar 

  113. Yeh, Y. C.; Creran, B.; Rotello, V. M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880.

    Article  CAS  PubMed  Google Scholar 

  114. Yang, W. J.; Liang, H. Z.; Ma, S. H.; Wang, D.; Huang, J. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustain. Mater. Technol. 2019, 22, e00109.

    CAS  Google Scholar 

  115. Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387.

    Article  CAS  PubMed  Google Scholar 

  116. Li, Z. X.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012, 41, 2590–2605.

    Article  CAS  PubMed  Google Scholar 

  117. Gao, X. H.; Yue, Q.; Liu, Z. N.; Ke, M. J.; Zhou, X. Y.; Li, S. H.; Zhang, J. P.; Zhang, R.; Chen, L.; Mao, Y. et al. Guiding brain-tumor surgery via blood-brain-barrier-permeable gold nanoprobes with acid-triggered MRI/SERRS signals. Adv. Mater. 2017, 29, 1603917.

    Article  Google Scholar 

  118. Cheng, K. K.; Chan, P. S.; Fan, S. J.; Kwan, S. M.; Yeung, K. L.; Wáng, Y. X. J.; Chow, A. H. L.; Wu, E. X.; Baum, L. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 2015, 44, 155–172.

    Article  CAS  PubMed  Google Scholar 

  119. de la Torre, P.; Pérez-Lorenzo, M. J.; Alcázar-Garrido, A.; Flores, A. I. Cell-based nanoparticles delivery systems for targeted cancer therapy: Lessons from anti-angiogenesis treatments. Molecules 2020, 25, 715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lv, W.; Liu, Y. I.; Li, S. N.; Lv, L. Y.; Lu, H. D.; Xin, H. L. Advances of nano drug delivery system for the theranostics of ischemic stroke. J. Nanobiotechnol. 2022, 20, 248.

    Article  Google Scholar 

  121. Yang, J. L.; Zhang, X. F.; Chen, X. J.; Wang, L.; Yang, G. D. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol. Ther. Nucleic Acids 2017, 7, 278–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kornblum, H. I. Introduction to neural stem cells. Stroke 2007, 38, 810–816.

    Article  PubMed  Google Scholar 

  123. Huang, B.; Jiang, X. C.; Zhang, T. Y.; Hu, Y. L.; Tabata, Y.; Chen, Z.; Pluchino, S.; Gao, J. Q. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia. Int. J. Pharm. 2017, 531, 90–100.

    Article  CAS  PubMed  Google Scholar 

  124. Tang, Y. H.; Ma, Y. Y.; Zhang, Z. J.; Wang, Y. T.; Yang, G. Y. Opportunities and challenges: Stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci. Ther. 2015, 21, 337–347.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gao, C. H.; Chu, X. Y.; Gong, W.; Zheng, J. P.; Xie, X. Y.; Wang, Y. L.; Yang, M. Y.; Li, Z. P.; Gao, C. S.; Yang, Y. RETRACTED ARTICLE: Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J. Nanobiotechnol. 2020, 18, 71.

    Article  CAS  Google Scholar 

  126. Khan, A. R.; Yang, X. Y.; Fu, M. F.; Zhai, G. X. Recent progress of drug nanoformulations targeting to brain. J. Control. Release 2018, 291, 37–64.

    Article  CAS  PubMed  Google Scholar 

  127. Campos-Bedolla, P.; Walter, F. R.; Veszelka, S.; Deli, M. A. Role of the blood-brain barrier in the nutrition of the central nervous system. Arch. Med. Res. 2014, 45, 610–638.

    Article  CAS  PubMed  Google Scholar 

  128. Ohtsuki, S.; Terasaki, T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm. Res. 2007, 24, 1745–1758.

    Article  CAS  PubMed  Google Scholar 

  129. Qu, B. Y.; Li, X. C.; Guan, M.; Li, X.; Hai, L.; Wu, Y. Design, synthesis and biological evaluation of multivalent glucosides with high affinity as ligands for brain targeting liposomes. Eur. J. Med. Chem. 2014, 72, 110–118.

    Article  CAS  PubMed  Google Scholar 

  130. Du, D.; Chang, N. D.; Sun, S. L.; Li, M. H.; Yu, H.; Liu, M. F.; Liu, X. Y.; Wang, G. T.; Li, H. C.; Liu, X. P. et al. The role of glucose transporters in the distribution of p-aminophenyl-α-D-mannopyranoside modified liposomes within mice brain. J. Control. Release 2014, 182, 99–110.

    Article  CAS  PubMed  Google Scholar 

  131. Gromnicova, R.; Davies, H. A.; Sreekanthreddy, P.; Romero, I. A.; Lund, T.; Roitt, I. M.; Phillips, J. B.; Male, D. K. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS One 2013, 8, e81043.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jiang, X. Y.; Xin, H. L.; Ren, Q. Y.; Gu, J. J.; Zhu, L. J.; Du, F. Y.; Feng, C. L.; Xie, Y. K.; Sha, X. Y.; Fang, X. L. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials 2014, 35, 518–529.

    Article  CAS  PubMed  Google Scholar 

  133. Hervé, F.; Ghinea, N.; Scherrmann, J. M. CNS delivery via adsorptive transcytosis. AAPS J. 2008, 10, 455–472.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bickel, U.; Yoshikawa, T.; Pardridge, W. M. Delivery of peptides and proteins through the blood-brain barrier. Adv. Drug Deliv. Rev. 2001, 46, 247–279.

    Article  CAS  PubMed  Google Scholar 

  135. Poduslo, J. F.; Ramakrishnan, M.; Holasek, S. S.; Ramirez-Alvarado, M.; Kandimalla, K. K.; Gilles, E. J.; Curran, G. L.; Wengenack, T. M. In vivo targeting of antibody fragments to the nervous system for Alzheimer’s disease immunotherapy and molecular imaging of amyloid plaques. J. Neurochem. 2007, 102, 420–433.

    Article  CAS  PubMed  Google Scholar 

  136. Poduslo, J. F.; Curran, G. L.; Gill, J. S. Putrescine-modified nerve growth factor: Bioactivity, plasma pharmacokinetics, blood-brain/nerve barrier permeability, and nervous system biodistribution. J. Neurochem. 1998, 71, 1651–1660.

    Article  CAS  PubMed  Google Scholar 

  137. Drin, G.; Cottin, S.; Blanc, E.; Rees, A. R.; Temsamani, J. Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem. 2003, 278, 31192–31201.

    Article  CAS  PubMed  Google Scholar 

  138. Mazel, M.; Clair, P.; Rousselle, C.; Vidal, P.; Scherrmann, J. M.; Mathieu, D.; Temsamani, J. Doxorubicin-peptide conjugates overcome multidrug resistance. Anticancer Drugs 2001, 12, 107–116.

    Article  CAS  PubMed  Google Scholar 

  139. Guo, L. R.; Ren, J. F.; Jiang, X. G. Perspectives on brain-targeting drug delivery systems. Curr. Pharm. Biotechnol. 2012, 13, 2310–2318.

    Article  CAS  PubMed  Google Scholar 

  140. Pang, Z. Q.; Gao, H. L.; Yu, Y.; Chen, J.; Guo, L. R.; Ren, J. F.; Wen, Z. Y.; Su, J. H.; Jiang, X. G. Brain delivery and cellular internalization mechanisms for transferrin conjugated biodegradable polymersomes. Int. J. Pharm. 2011, 415, 284–292.

    Article  CAS  PubMed  Google Scholar 

  141. Fillebeen, C.; Descamps, L.; Dehouck, M. P.; Fenart, L.; Benaïssa, M.; Spik, G.; Cecchelli, R.; Pierce, A. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J. Biol. Chem. 1999, 274, 7011–7017.

    Article  CAS  PubMed  Google Scholar 

  142. Wang, Y. H.; Zhan, J.; Huang, J. Y.; Wang, X.; Chen, Z. H.; Yang, Z. M.; Li, J. Dynamic responsiveness of self-assembling peptide-based nano-drug systems. Interdiscip. Med. 2023, 7, e20220005.

    Article  Google Scholar 

  143. Chung, E. P.; Cotter, J. D.; Prakapenka, A. V.; Cook, R. L.; DiPerna, D. M.; Sirianni, R. W. Targeting small molecule delivery to the brain and spinal cord via intranasal administration of rabies virus glycoprotein (RVG29)-modified PLGA nanoparticles. Pharmaceutics 2020, 12, 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kuplennik, N.; Lang, K.; Steinfeld, R.; Sosnik, A. Folate receptor α-modified nanoparticles for targeting of the central nervous system. ACS Appl. Mater. Interfaces 2019, 11, 39633–39647.

    Article  CAS  PubMed  Google Scholar 

  145. Patel, R. B.; Ye, M. Z.; Carlson, P. M.; Jaquish, A.; Zangl, L.; Ma, B.; Wang, Y. Y.; Arthur, I.; Xie, R. S.; Brown, R. J. et al. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv. Mater. 2019, 31, 1902626.

    Article  CAS  Google Scholar 

  146. Liu, J. J.; Miao, L.; Sui, J. Y.; Hao, Y. Y.; Huang, G. H. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J. Pharm. Sci. 2020, 15, 576–590.

    Article  PubMed  Google Scholar 

  147. Moretti, A.; Ferrari, F.; Villa, R. F. Neuroprotection for ischaemic stroke: Current status and challenges. Pharmacol. Ther. 2015, 146, 23–34.

    Article  CAS  PubMed  Google Scholar 

  148. Chamorro, Á.; Lo, E. H.; Renú, A.; van Leyen, K.; Lyden, P. D. The future of neuroprotection in stroke. J. Neurol. Neurosurg. Psychiatry 2021, 92, 129–135.

    Article  PubMed  Google Scholar 

  149. Korshoj, L. E.; Shi, W.; Duan, B.; Kielian, T. The prospect of nanoparticle systems for modulating immune cell polarization during central nervous system infection. Front. Immunol. 2021, 12, 670931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Xiao, L.; Wei, F.; Zhou, Y. H.; Anderson, G. J.; Frazer, D. M.; Lim, Y. C.; Liu, T. Q.; Xiao, Y. Dihydrolipoic acid-gold nanoclusters regulate microglial polarization and have the potential to alter neurogenesis. Nano Lett. 2020, 20, 478–495.

    Article  CAS  PubMed  Google Scholar 

  151. Zhu, F. D.; Hu, Y. J.; Yu, L.; Zhou, X. G.; Wu, J. M.; Tang, Y.; Qin, D. L.; Fan, Q. Z.; Wu, A. G. Nanoparticles: A hope for the treatment of inflammation in CNS. Front. Pharmacol. 2021, 12, 683935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pardridge, W. M. Why is the global CNS pharmaceutical market so under-penetrated. Drug Discovery Today 2002, 7, 5–7.

    Article  PubMed  Google Scholar 

  153. Buonerba, C.; Di Lorenzo, G.; Marinelli, A.; Federico, P.; Palmieri, G.; Imbimbo, M.; Conti, P.; Peluso, G.; De Placido, S.; Sampson, J. H. A comprehensive outlook on intracerebral therapy of malignant gliomas. Crit. Rev. Oncol. Hematol. 2011, 80, 54–68.

    Article  PubMed  Google Scholar 

  154. Bobo, R. H.; Laske, D. W.; Akbasak, A.; Morrison, P. F.; Dedrick, R. L.; Oldfield, E. H. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA 1994, 91, 2076–2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bidros, D. S.; Liu, J. K.; Vogelbaum, M. A. Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol. 2010, 6, 117–125.

    Article  CAS  PubMed  Google Scholar 

  156. Chen, M. Y.; Lonser, R. R.; Morrison, P. F.; Governale, L. S.; Oldfield, E. H. Variables affecting convection-enhanced delivery to the striatum: A systematic examination of rate of infusion, cannula size, infusate concentration, and tissue—cannula sealing time. J. Neurosurg. 1999, 90, 315–320.

    Article  CAS  PubMed  Google Scholar 

  157. Zhan, W. B.; Wang, C. H. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. J. Control. Release 2018, 285, 212–229.

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, C.; Nance, E. A.; Mastorakos, P.; Chisholm, J.; Berry, S.; Eberhart, C.; Tyler, B.; Brem, H.; Suk, J. S.; Hanes, J. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J. Control. Release 2017, 263, 112–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Papisov, M. I.; Belov, V. V.; Gannon, K. S. Physiology of the intrathecal bolus: The leptomeningeal route for macromolecule and particle delivery to CNS. Mol. Pharm. 2013, 10, 1522–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fowler, M. J.; Cotter, J. D.; Knight, B. E.; Sevick-Muraca, E. M.; Sandberg, D. I.; Sirianni, R. W. Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev. 2020, 165–166, 77–95.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018, 10, 116.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Upadhaya, P. G.; Pulakkat, S.; Patravale, V. B. Nose-to-brain delivery: Exploring newer domains for glioblastoma multiforme management. Drug Deliv. Transl. Res. 2020, 10, 1044–1056.

    Article  PubMed  Google Scholar 

  163. Lochhead, J. J.; Yang, J. Z.; Ronaldson, P. T.; Davis, T. P. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front. Physiol. 2020, 11, 914.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Su, Y.; Sun, B. X.; Gao, X. S.; Dong, X. Y.; Fu, L. B.; Zhang, Y. X.; Li, Z. L.; Wang, Y.; Jiang, H. Y.; Han, B. Intranasal delivery of targeted nanoparticles loaded with miR-132 to brain for the treatment of neurodegenerative diseases. Front. Pharmacol. 2020, 11, 1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Craparo, E. F.; Musumeci, T.; Bonaccorso, A.; Pellitteri, R.; Romeo, A.; Naletova, I.; Cucci, L. M.; Cavallaro, G.; Satriano, C. mPEG-PLGA nanoparticles labelled with loaded or conjugated rhodamine-B for potential nose-to-brain delivery. Pharmaceutics 2021, 13, 1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jo, D. H.; Kim, J. H.; Lee, T. G.; Kim, J. H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 2015, 11, 1603–1611.

    Article  CAS  PubMed  Google Scholar 

  167. Betzer, O.; Shilo, M.; Opochinsky, R.; Barnoy, E.; Motiei, M.; Okun, E.; Yadid, G.; Popovtzer, R. The effect of nanoparticle size on the ability to cross the blood-brain barrier: An in vivo study. Nanomedicine (Lond.) 2017, 12, 1533–1546.

    Article  CAS  PubMed  Google Scholar 

  168. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

    Article  CAS  PubMed  Google Scholar 

  169. Nowak, M.; Brown, T. D.; Graham, A.; Helgeson, M. E.; Mitragotri, S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng. Transl. Med. 2020, 5, e10153.

    Article  CAS  PubMed  Google Scholar 

  170. Amida; Janát-Amsbury, M. M.; Ray, A.; Peterson, C. M.; Ghandehari, H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm. 2011, 77, 417–423.

    Article  Google Scholar 

  171. Hillaireau, H.; Couvreur, P. Nanocarriers' entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci. 2009, 66, 2873–2896.

    Article  CAS  PubMed  Google Scholar 

  172. Schipper, M. L.; Iyer, G.; Koh, A. L.; Cheng, Z.; Ebenstein, Y.; Aharoni, A.; Keren, S.; Bentolila, L. A.; Li, J. Q.; Rao, J. Q. et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009, 5, 126–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fytianos, K.; Chortarea, S.; Rodriguez-Lorenzo, L.; Blank, F.; von Garnier, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Aerosol delivery of functionalized gold nanoparticles target and activate dendritic cells in a 3D lung cellular model. ACS Nano 2017, 11, 375–383.

    Article  CAS  PubMed  Google Scholar 

  174. Kim, B.; Han, G.; Toley, B. J.; Kim, C. K.; Rotello, V. M.; Forbes, N. S. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat. Nanotechnol. 2010, 5, 465–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lu, J. J.; Langer, R.; Chen, J. Z. A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol. Pharm. 2009, 6, 763–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dobrovolskaia, M. A.; Shurin, M.; Shvedova, A. A. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 2016, 299, 78–89.

    Article  CAS  PubMed  Google Scholar 

  177. Zhang, L. Y.; Becton, M.; Wang, X. Q. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings. J. Phys. Chem. B 2015, 119, 3786–3794.

    Article  CAS  PubMed  Google Scholar 

  178. Sedighi, M.; Sieber, S.; Rahimi, F.; Shahbazi, M. A.; Rezayan, A. H.; Huwyler, J.; Witzigmann, D. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv. Transl. Res. 2019, 9, 404–413.

    Article  CAS  PubMed  Google Scholar 

  179. Palanikumar, L.; Al-Hosani, S.; Kalmouni, M.; Nguyen, V. P.; Ali, L.; Pasricha, R.; Barrera, F. N.; Magzoub, M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun. Biol. 2020, 3, 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Liu, Y.; Yin, Y.; Wang, L. Y.; Zhang, W. F.; Chen, X. M.; Yang, X. X.; Xu, J. J.; Ma, G. H. Surface hydrophobicity of microparticles modulates adjuvanticity. J. Mater. Chem. B 2013, 1, 3888–3896.

    Article  CAS  PubMed  Google Scholar 

  181. Moyano, D. F.; Goldsmith, M.; Solfiell, D. J.; Landesman-Milo, D.; Miranda, O. R.; Peer, D.; Rotello, V. M. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 2012, 134, 3965–3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zylberberg, C.; Gaskill, K.; Pasley, S.; Matosevic, S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 2017, 24, 441–452.

    Article  CAS  PubMed  Google Scholar 

  183. Xu, Y. N.; Fourniols, T.; Labrak, Y.; Préat, V.; Beloqui, A.; des Rieux, A. Surface modification of lipid-based nanoparticles. ACS Nano 2022, 16, 7168–7196.

    Article  CAS  PubMed  Google Scholar 

  184. Liu, Y.; An, S.; Li, J. F.; Kuang, Y. Y.; He, X.; Guo, Y. B.; Ma, H. J.; Zhang, Y.; Ji, B.; Jiang, C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials 2016, 80, 33–45.

    Article  CAS  PubMed  Google Scholar 

  185. Vergoni, A. V.; Tosi, G.; Tacchi, R.; Vandelli, M. A.; Bertolini, A.; Costantino, L. Nanoparticles as drug delivery agents specific for CNS: In vivo biodistribution. Nanomedicine 2009, 5, 369–377.

    Article  CAS  PubMed  Google Scholar 

  186. Li, S. D.; Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 2008, 5, 496–504.

    Article  CAS  PubMed  Google Scholar 

  187. Wiley, D. T.; Webster, P.; Gale, A.; Davis, M. E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl. Acad. Sci. USA 2013, 110, 8662–8667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cheng, X. W.; Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 2016, 99, 129–137.

    Article  CAS  PubMed  Google Scholar 

  189. Matsuno, J.; Kanamaru, T.; Arai, K.; Tanaka, R.; Lee, J. H.; Takahashi, R.; Sakurai, K.; Fujii, S. Synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles, and in vivo pharmacokinetics depending on the structural characteristics. J. Control. Release 2020, 324, 405–412.

    Article  CAS  PubMed  Google Scholar 

  190. Mueller, S.; Kline, C.; Villanueva-Meyer, J.; Hoffman, C.; Raber, S.; Bonner, E. R.; Nazarian, J.; Lundy, S.; Molinaro, A.; Prados, M. et al. DDRE-21. PNOC015: Phase 1 study of mtx110 delivered by convection enhanced delivery (CED) in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG) previously treated with radiation therapy. Neuro Oncol. 2020, 22, ii66.

    Article  PubMed Central  Google Scholar 

  191. Mitchell, D. A.; Xie, W. H.; Schmittling, R.; Learn, C.; Friedman, A.; McLendon, R. E.; Sampson, J. H. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol. 2008, 10, 10–18.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Mrugala, M. M.; Kim, B.; Sharma, A.; Johnson, N.; Graham, C.; Kurland, B. F.; Gralow, J. Phase II study of systemic high-dose methotrexate and intrathecal liposomal cytarabine for treatment of leptomeningeal carcinomatosis from breast cancer. Clin. Breast Cancer 2019, 19, 311–316.

    Article  CAS  PubMed  Google Scholar 

  193. Le Rhun, E.; Wallet, J.; Mailliez, A.; Le Deley, M. C.; Rodrigues, L.; Boulanger, T.; Lorgis, V.; Barrière, J.; Robin, Y. M.; Weller, M. et al. Intrathecal liposomal cytarabine plus systemic therapy versus systemic chemotherapy alone for newly diagnosed leptomeningeal metastasis from breast cancer. Neuro Oncol. 2020, 22, 524–538.

    Article  CAS  PubMed  Google Scholar 

  194. Keskin, O.; Bahar, I.; Jernigan, R. L.; Beutler, J. A.; Shoemaker, R. H.; Sausville, E. A.; Covell, D. G. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure. Anticancer Drug Des. 2000, 15, 79–98.

    CAS  PubMed  Google Scholar 

  195. Fleming, A. B.; Saltzman, W. M. Pharmacokinetics of the carmustine implant. Clin. Pharmacokinet. 2002, 41, 403–419.

    Article  CAS  PubMed  Google Scholar 

  196. Brem, H.; Piantadosi, S.; Burger, P.; Walker, M.; Selker, R.; Vick, N. A.; Black, K.; Sisti, M.; Brem, S.; Mohr, G. et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 1995, 345, 1008–1012.

    Article  CAS  PubMed  Google Scholar 

  197. Verry, C.; Dufort, S.; Villa, J.; Gavard, M.; Iriart, C.; Grand, S.; Charles, J.; Chovelon, B.; Cracowski, J. L.; Quesada, J. L. et al. Theranostic AGuIX nanoparticles as radiosensitizer: A phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial). Radiother Oncol 2021, 160, 159–165.

    Article  CAS  PubMed  Google Scholar 

  198. Vucic, S.; Kiernan, M. C.; Menon, P.; Huynh, W.; Rynders, A.; Ho, K. S.; Glanzman, R.; Hotchkin, M. T. Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-Au8 as a mechanism to slow disease progression. BMJ Open 2021, 11, e041479.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Petrou, P.; Kassis, I.; Levin, N.; Paul, F.; Backner, Y.; Benoliel, T.; Oertel, F. C.; Scheel, M.; Hallimi, M.; Yaghmour, N. et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain 2020, 143, 3574–3588.

    Article  PubMed  Google Scholar 

  200. Jaeger, L. B.; Dohgu, S.; Sultana, R.; Lynch, J. L.; Owen, J. B.; Erickson, M. A.; Shah, G. N.; Price, T. O.; Fleegal-Demotta, M. A.; Butterfiled, D. A. et al. Lipopolysaccharide alters the blood–brain barrier transport of amyloid β protein: A mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav. Immun. 2009, 23, 507–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Banks, W. A.; Gray, A. M.; Erickson, M. A.; Salameh, T. S.; Damodarasamy, M.; Sheibani, N.; Meabon, J. S.; Wing, E. E.; Morofuji, Y.; Cook, D. G. et al. Lipopolysaccharide-induced blood-brain barrier disruption: Roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J. Neuroinflammation 2015, 12, 223.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Horie, M.; Tabei, Y. Role of oxidative stress in nanoparticles toxicity. Free Radic. Res. 2021, 55, 331–342.

    Article  CAS  PubMed  Google Scholar 

  203. Yokel, R. A. Direct nose to the brain nanomedicine delivery presents a formidable challenge. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1767.

    Article  PubMed  Google Scholar 

  204. Landesman-Milo, D.; Peer, D. Altering the immune response with lipid-based nanoparticles. J. Control. Release 2012, 161, 600–608.

    Article  CAS  PubMed  Google Scholar 

  205. Tandrup Schmidt, S.; Foged, C.; Korsholm, K. S.; Rades, T.; Christensen, D. Liposome-based adjuvants for subunit vaccines: Formulation strategies for subunit antigens and immunostimulators. Pharmaceutics 2016, 8, 7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82073366 and 32100748), the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (No. ZYGD18007), the National Natural Science Foundation of Sichuan Province (No. 2022NSFSC1642). All figures were made by Biorender.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Zhang, R., Wang, Y. et al. Nanoparticle delivery for central nervous system diseases and its clinical application. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6598-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6598-1

Keywords

Navigation