Skip to main content

Advertisement

Log in

Burns as the Outlier in Early Enteral Nutrition in Critical Illness

  • Nutrition, Metabolism, and Surgery (Keith Miller, Section Editor)
  • Published:
Current Surgery Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Severe burn injuries result in a number of physiologic and metabolic derangements that make nutritional support an especially critical and challenging component of burn patient's treatment. This article aims to review the current literature regarding early enteral nutrition in burn patients.

Recent Findings

Early enteral feeding is thought to be an important component of modulating the hypermetabolic and inflammatory response seen in critical illness. This dogma has been questioned by studies indicating that permissive underfeeding in the first phase of critical illness might be of benefit. However, these studies lack stratification to evaluate outcomes in the burn population, specifically. Studies that do evaluate early enteral nutrition in the burn population have revealed reduced morbidity and mortality with this nutrition strategy.

Summary

The hypermetabolic response that occurs in severe burns makes this form of injury unique. Evidence supports early enteral nutrition as the gold standard in this population. Future advances in the field of nutrition must be evaluated in the burn population, specifically, before being applied to patients with this form of critical illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Refs. [3, 14,15,16,17]

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: ∙ Of importance

  1. Association AB. Burn incidence fact sheet. http://ameriburn.org/who-we-are/media/burn-incidence-fact-sheet/. Accessed 5/23/19.

  2. Herndon DN. Total burn care. 5th ed. Edinburgh: Elsevier; 2018: https://www.elsevier.com/books/total-burn-care/9780323476614.

  3. Porter C, Tompkins RG, Finnerty CC, Sidossis LS, Suman OE, Herndon DN. The metabolic stress response to burn trauma: current understanding and therapies. Lancet (Lond Engl). 2016;388(10052):1417–26.

    Article  Google Scholar 

  4. Williams FN, Herndon DN. Metabolic and endocrine considerations after burn injury. Clin Plast Surg. 2017;44(3):541–53.

    Article  PubMed  Google Scholar 

  5. Jeschke MG, Gauglitz GG, Kulp GA, et al. Long-term persistance of the pathophysiologic response to severe burn injury. PLoS ONE. 2011;6(7):e21245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. ∙ McClave SA, Taylor BE, Martindale RG et al.. Guidelines for the provision and assessment of nutrition support therapy in the adult critically Ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenteral Enteral Nutr 2016;40(2):159–211. SCCM and ASPEN evidence-based consensus guidelines regarding nutrition in critially ill patients.

    Article  CAS  PubMed  Google Scholar 

  7. Reintam Blaser A, Starkopf J, Alhazzani W, et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med. 2017;43(3):380–98.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79.

    Article  PubMed  Google Scholar 

  9. Marik PE. Is early starvation beneficial for the critically ill patient? Curr Opin Clin Nutr Metab Care. 2016;19(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  10. ∙ Patel JJ, Martindale RG, McClave SA. Controversies surrounding critical care nutrition: an appraisal of permissive underfeeding, protein, and outcomes. JPEN J Parenteral Enteral Nutr 2017:42(3):508–15. Review of recent literature evaluating optimal timing, dose, composition, and advancement of nutrition in the early phase of critical illness, specifically permissive underfeeding.

  11. Schetz M, Casaer MP, Van den Berghe G. Does artificial nutrition improve outcome of critical illness? Crit Care. 2013;17(1):302.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Allingstrup MJ, Kondrup J, Wiis J, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensive Care Med. 2017;43(11):1637–47.

    Article  PubMed  Google Scholar 

  13. Harvey SE, Parrott F, Harrison DA, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371(18):1673–84.

    Article  PubMed  CAS  Google Scholar 

  14. ∙ Clark A, Imran J, Madni T, Wolf SE. Nutrition and metabolism in burn patients. Burns Trauma. 2017;5:11. Comprehensive review of metabolic derangements resulting from burn injury and the changes in nutritional requirements that result.

  15. Hart DW, Wolf SE, Mlcak R, et al. Persistence of muscle catabolism after severe burn. Surgery. 2000;128(2):312–9.

    Article  CAS  PubMed  Google Scholar 

  16. Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ. Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values. Am J Clin Nutr. 1998;67(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  17. Monk DN, Plank LD, Franch-Arcas G, Finn PJ, Streat SJ, Hill GL. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 1996;223(4):395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeschke MG, Chinkes DL, Finnerty CC, et al. Pathophysiologic response to severe burn injury. Ann Surg. 2008;248(3):387–401.

    PubMed  Google Scholar 

  19. Porter C, Herndon DN, Borsheim E, et al. Long-term skeletal muscle mitochondrial dysfunction is associated with hypermetabolism in severely burned children. J Burn Care Res. 2016;37(1):53–63.

    Article  PubMed  Google Scholar 

  20. ∙ Williams FN, Herndon DN, Jeschke MG. The hypermetabolic response to burn injury and interventions to modify this response. Clin Plast Surg. 2009;36(4):583–596. Comprehensive review of hypermetabolic changes resulting from burn injury and the interventions that mitigate this response.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jeschke MG, Mlcak RP, Finnerty CC, et al. Burn size determines the inflammatory and hypermetabolic response. Crit Care. 2007;11(4):R90.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rollins C, Huettner F, Neumeister MW. Clinician’s guide to nutritional therapy following major burn injury. Clin Plast Surg. 2017;44(3):555–66.

    Article  PubMed  Google Scholar 

  23. Porter C, Herndon DN, Borsheim E, et al. Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults. Am J Physiol Endocrinol Metab. 2014;307(5):E462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Greenhalgh DG. Management of burns. N Engl J Med. 2019;380(24):2349–59.

    Article  PubMed  Google Scholar 

  25. Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med. 2001;345(17):1223–9.

    Article  CAS  PubMed  Google Scholar 

  26. Williams FN, Jeschke MG, Chinkes DL, Suman OE, Branski LK, Herndon DN. Modulation of the hypermetabolic response to trauma: temperature, nutrition, and drugs. J Am Coll Surg. 2009;208(4):489–502.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Abdullahi A, Jeschke MG. Nutrition and anabolic pharmacotherapies in the care of burn patients. Nutr Clin Pract. 2014;29(5):621–30.

    Article  PubMed  Google Scholar 

  28. Auger C, Samadi O, Jeschke MG. The biochemical alterations underlying post-burn hypermetabolism. Biochim Biophys Acta Mol Basis Dis. 2017;1863(10 Pt B):2633–44.

    Article  CAS  PubMed  Google Scholar 

  29. Wolf SE, Thomas SJ, Dasu MR, et al. Improved net protein balance, lean mass, and gene expression changes with oxandrolone treatment in the severely burned. Ann Surg. 2003;237(6):801–10 (discussion 810–801).

    PubMed  PubMed Central  Google Scholar 

  30. Porter C, Hardee JP, Herndon DN, Suman OE. The role of exercise in the rehabilitation of patients with severe burns. Exerc Sport Sci Rev. 2015;43(1):34–40.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gianotti L, Alexander JW, Nelson JL, Fukushima R, Pyles T, Chalk CL. Role of early enteral feeding and acute starvation on postburn bacterial translocation and host defense: prospective, randomized trials. Crit Care Med. 1994;22(2):265–72.

    Article  CAS  PubMed  Google Scholar 

  32. Magnotti LJ, Upperman JS, Xu DZ, Lu Q, Deitch EA. Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock. Ann Surg. 1998;228(4):518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McClave SA, Heyland DK. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr Clin Pract. 2009;24(3):305–15.

    Article  PubMed  Google Scholar 

  34. Moore FA, Moore EE. The evolving rationale for early enteral nutrition based on paradigms of multiple organ failure: a personal journey. Nutr Clin Pract. 2009;24(3):297–304.

    Article  PubMed  Google Scholar 

  35. Czaja AJ, McAlhany JC, Pruitt BA. Acute gastroduodenal disease after thermal injury. An endoscopic evaluation of incidence and natural history. N Engl J Med. 1974;291(18):925–9.

    Article  CAS  PubMed  Google Scholar 

  36. McClave SA, Snider HL. Use of indirect calorimetry in clinical nutrition. Nutr Clin Pract. 1992;7(5):207–21.

    Article  CAS  PubMed  Google Scholar 

  37. Davis KA, Kinn T, Esposito TJ, Reed RL 2nd, Santaniello JM, Luchette FA. Nutritional gain versus financial gain: the role of metabolic carts in the surgical ICU. J Trauma. 2006;61(6):1436–40.

    Article  PubMed  Google Scholar 

  38. Leung James J. Predictive energy equations are inaccurate for determining energy expenditure in adult burn injury: a retrospective observational study. ANZ J Surg. 2019;89(5):578–83.

    Article  PubMed  Google Scholar 

  39. Dickerson RN, Gervasio JM, Riley ML, et al. Accuracy of predictive methods to estimate resting energy expenditure of thermally-injured patients. JPEN J Parenter Enteral Nutr. 2002;26(1):17–29.

    Article  PubMed  Google Scholar 

  40. Berger MM, Reintam-Blaser A, Calder PC, et al. Monitoring nutrition in the ICU. Clin Nutr. 2019;38(2):584–93.

    Article  PubMed  Google Scholar 

  41. Hart DW, Wolf SE, Herndon DN, et al. Energy expenditure and caloric balance after burn: increased feeding leads to fat rather than lean mass accretion. Ann Surg. 2002;235(1):152–61.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rodriguez NA, Jeschke MG, Williams FN, Kamolz LP, Herndon DN. Nutrition in burns: Galveston contributions. JPEN J Parenter Enteral Nutr. 2011;35(6):704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saffle JR, Medina E, Raymond J, Westenskow D, Kravitz M, Warden GD. Use of indirect calorimetry in the nutritional management of burned patients. J Trauma. 1985;25(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  44. McClave SA, Kozar R, Martindale RG, et al. Summary points and consensus recommendations from the north american surgical nutrition summit. J Parenteral Enteral Nutr. 2013;37(5S):99S–105S.

    Article  Google Scholar 

  45. Prelack K, Dylewski M, Sheridan RL. Practical guidelines for nutritional management of burn injury and recovery. Burns. 2007;33(1):14–24.

    Article  PubMed  Google Scholar 

  46. Hall LK, Shahrokhi S, Jeschke GM. Enteral nutrition support in burn care: a review of current recommendations as instituted in the Ross Tilley Burn Centre. Nutrients. 2012;4(11):1554–65.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rousseau A-F, Losser M-R, Ichai C, Berger MM. ESPEN endorsed recommendations: nutritional therapy in major burns. Clin Nutr. 2013;32(4):497–502.

    Article  PubMed  Google Scholar 

  48. Mochizuki H, Trocki O, Dominioni L, Ray MB, Alexander JW. Optimal lipid content for enteral diets following thermal injury. JPEN J Parenter Enteral Nutr. 1984;8(6):638–46.

    Article  CAS  PubMed  Google Scholar 

  49. Garrel DR, Razi M, Lariviere F, et al. Improved clinical status and length of care with low-fat nutrition support in burn patients. JPEN J Parenter Enteral Nutr. 1995;19(6):482–91.

    Article  CAS  PubMed  Google Scholar 

  50. Wolfe RR, Goodenough RD, Burke JF, Wolfe MH. Response of protein and urea kinetics in burn patients to different levels of protein intake. Ann Surg. 1983;197(2):163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jahoor F, Desai M, Herndon DN, Wolfe RR. Dynamics of the protein metabolic response to burn injury. Metabolism. 1988;37(4):330–7.

    Article  CAS  PubMed  Google Scholar 

  52. Gamliel Z, DeBiasse MA, Demling RH. Essential microminerals and their response to burn injury. J Burn Care Rehabil. 1996;17(3):264–72.

    CAS  PubMed  Google Scholar 

  53. Berger MM. Antioxidant micronutrients in major trauma and burns: evidence and practice. Nutr Clin Pract. 2006;21(5):438–49.

    Article  PubMed  Google Scholar 

  54. Rock CL, Dechert RE, Khilnani R, Parker RS, Rodriguez JL. Carotenoids and antioxidant vitamins in patients after burn injury. J Burn Care Rehabil. 1997;18(3):269–78 (discussion 268).

    Article  CAS  PubMed  Google Scholar 

  55. Rizzo JA, Rowan MP, Driscoll IR, Chung KK, Friedman BC. Vitamin C in burn resuscitation. Crit Care Clin. 2016;32(4):539–46.

    Article  PubMed  Google Scholar 

  56. Dubick MA, Williams C, Elgjo GI, Kramer GC. High-dose vitamin C infusion reduces fluid requirements in the resuscitation of burn-injured sheep. Shock. 2005;24(2):139–44.

    Article  CAS  PubMed  Google Scholar 

  57. Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H, Shimazaki S. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg. 2000;135(3):326–31.

    Article  CAS  PubMed  Google Scholar 

  58. Lin J, Falwell S, Greenhalgh D, Palmieri T, Sen S. High-dose ascorbic acid for burn shock resuscitation may not improve outcomes. J Burn Care Res. 2018;39(5):708–12.

    Article  PubMed  Google Scholar 

  59. Kahn SA, Lentz CW. Fictitious hyperglycemia: point-of-care glucose measurement is inaccurate during high-dose vitamin C infusion for burn shock resuscitation. J Burn Care Res. 2015;36(2):e67–71.

    Article  PubMed  Google Scholar 

  60. Berger M. Basics in clinical nutrition: nutritional support in burn patients. E Spen Eur E J Clin Nutr Metab. 2009;4(6):308–12.

    Article  Google Scholar 

  61. Osland E, Hossain MB, Khan S, Memon MA. Effect of timing of pharmaconutrition (immunonutrition) administration on outcomes of elective surgery for gastrointestinal malignancies: a systematic review and meta-analysis. JPEN J Parenter Enteral Nutr. 2014;38(1):53–69.

    Article  PubMed  Google Scholar 

  62. Braunschweig CL, Levy P, Sheean PM, Wang X. Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr. 2001;74(4):534–42.

    Article  CAS  PubMed  Google Scholar 

  63. Braunschweig CA, Sheean PM, Peterson SJ, et al. Intensive nutrition in acute lung injury: a clinical trial (INTACT). JPEN J Parenter Enteral Nutr. 2015;39(1):13–20.

    Article  PubMed  Google Scholar 

  64. Ibrahim EH, Mehringer L, Prentice D, et al. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002;26(3):174–81.

    Article  PubMed  Google Scholar 

  65. Krishnan JA, Parce PB, Martinez A, Diette GB, Brower RG. Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes. Chest. 2003;124(1):297–305.

    Article  PubMed  Google Scholar 

  66. Arabi YM, Haddad SH, Tamim HM, et al. Near-target caloric intake in critically ill medical-surgical patients is associated with adverse outcomes. JPEN J Parenter Enteral Nutr. 2010;34(3):280–8.

    Article  PubMed  Google Scholar 

  67. Arabi YM, Tamim HM, Dhar GS, et al. Permissive underfeeding and intensive insulin therapy in critically ill patients: a randomized controlled trial. Am J Clin Nutr. 2011;93(3):569–77.

    Article  CAS  PubMed  Google Scholar 

  68. Casaer MP, Wilmer A, Hermans G, Wouters PJ, Mesotten D, Van den Berghe G. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis. Am J Respir Crit Care Med. 2013;187(3):247–55.

    Article  PubMed  Google Scholar 

  69. Crosara IC, Melot C, Preiser JC. A J-shaped relationship between caloric intake and survival in critically ill patients. Ann Intensive Care. 2015;5(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  70. McClave SA, Codner P, Patel J, Hurt RT, Allen K, Martindale RG. Should we aim for full enteral feeding in the first week of critical illness? Nutr Clin Pract. 2016;31(4):425–31.

    Article  PubMed  Google Scholar 

  71. Casaer MP, Van den Berghe G. Nutrition in the acute phase of critical illness. N Engl J Med. 2014;370(25):2450–1.

    CAS  PubMed  Google Scholar 

  72. Weijs PJ, Looijaard WG, Beishuizen A, Girbes AR, Oudemans-van Straaten HM. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care. 2014;18(6):701.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Doig GS, Simpson F, Heighes PT, et al. Restricted versus continued standard caloric intake during the management of refeeding syndrome in critically ill adults: a randomised, parallel-group, multicentre, single-blind controlled trial. Lancet Respir Med. 2015;3(12):943–52.

    Article  PubMed  Google Scholar 

  74. Lewis SJ, Andersen HK, Thomas S. Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: a systematic review and meta-analysis. J Gastrointest Surg. 2009;13(3):569–75.

    Article  PubMed  Google Scholar 

  75. Reintam Blaser A, Berger MM. Early or late feeding after ICU admission? Nutrients. 2017. https://doi.org/10.3390/nu9121278.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Grammatikopoulou MG, Theodoridis X, Gkiouras K, et al. AGREEing on guidelines for nutrition management of adult severe burn patients. JPEN J Parenter Enteral Nutr. 2019;43(4):490–6.

    Article  PubMed  Google Scholar 

  77. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27(5):355–73.

    Article  PubMed  Google Scholar 

  78. ISBI Practice Guidelines for Burn Care. Burns. 2016;42(5):953–1021.

    Article  Google Scholar 

  79. ∙ Pu H, Doig GS, Heighes PT, Allingstrup MJ. Early enteral nutrition reduces mortality and improves other key outcomes in patients with major burn injury: a meta-analysis of randomized controlled trials. Crit Care Med. 2018;46(12):2036–42. A meta-analysis evaluating seven randomized-controlled trials that compare the effects of early enteral nutrition initiated within 24 hours of burn injury to other nutrition strategies.

    Article  PubMed  Google Scholar 

  80. Chiarelli A, Enzi G, Casadei A, Baggio B, Valerio A, Mazzoleni F. Very early nutrition supplementation in burned patients. Am J Clin Nutr. 1990;51(6):1035–9.

    Article  CAS  PubMed  Google Scholar 

  81. Lam NN, Tien NG, Khoa CM. Early enteral feeding for burned patients: an effective method which should be encouraged in developing countries. Burns. 2008;34(2):192–6.

    Article  PubMed  Google Scholar 

  82. Peck MD, Kessler M, Cairns BA, Chang YH, Ivanova A, Schooler W. Early enteral nutrition does not decrease hypermetabolism associated with burn injury. J Trauma. 2004;57(6):1143–8 (discussion 1148–1149).

    Article  PubMed  Google Scholar 

  83. Vicic VK, Radman M, Kovacic V. Early initiation of enteral nutrition improves outcomes in burn disease. Asia Pac J Clin Nutr. 2013;22(4):543–7.

    PubMed  Google Scholar 

  84. Chen ZW, Yu B, et al. Effect of early intestinal nutrition on intestinal permeability in burn patients. Pract J Med. 2007;23:833–5.

    Google Scholar 

  85. He WHWT. Effect of cimetidine and early enteral nutrition on preventing burn stress ulcer. Sichuan Med J. 2001;22:942–3.

    Google Scholar 

  86. Wu Z. Effect of enteral nutrition on serum protein expression and the role of body tissue repari in severely burned patients. China Med Pharm. 2013;3:7–12.

    Google Scholar 

  87. Pham CH, Collier ZJ, Webb AB, Garner WL, Gillenwater TJ. How long are burn patients really NPO in the perioperative period and can we effectively correct the caloric deficit using an enteral feeding “Catch-up” protocol? Burns. 2018;44(8):2006–10.

    Article  CAS  PubMed  Google Scholar 

  88. Varon DE, Freitas G, Goel N, et al. Intraoperative feeding improves calorie and protein delivery in acute burn patients. J Burn Care Res. 2017;38(5):299–303.

    Article  PubMed  Google Scholar 

  89. Carmichael H, Joyce S, Smith T, Patton L, Lambert Wagner A, Wiktor AJ. Safety and efficacy of intraoperative gastric feeding during burn surgery. Burns. 2019;45(5):1089–93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Bozeman.

Ethics declarations

Disclosure

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Nutrition, Metabolism, and Surgery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruenderman, E.H., Webb, J.J. & Bozeman, M.C. Burns as the Outlier in Early Enteral Nutrition in Critical Illness. Curr Surg Rep 8, 1 (2020). https://doi.org/10.1007/s40137-019-0246-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40137-019-0246-9

Keywords

Navigation