Skip to main content

Advertisement

Log in

Update on the Intraoperative OCT: Where Do We Stand?

  • Retina (J Fortun, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this study is to summarize recent updates and discuss emerging technologies related to intraoperative optical coherence tomography (OCT) for posterior segment surgery.

Recent Findings

The development of microscope-integrated OCT technology has expanded the potential applications for intraoperative OCT in the operating room. Research has continued to support the potential impact of intraoperative OCT on surgical decision-making and the overall perceived value by surgeons for utilizing intraoperative OCT during vitreoretinal surgery. In addition, recent research in intraoperative OCT has expanded to emerging surgical procedures such as image-guided Argus II retinal prosthesis implant, subretinal gene/cell delivery, and transretinal retinochoroidal biopsy. Technology advancements, including software technologies, prototype non-metallic OCT compatible surgical instruments, and real-time 3-D OCT (4-D OCT) device using swept source technology have been developed. The recent emergence of digital surgery provides an additional opportunity for image-guided surgery utilizing real-time intraoperative OCT overlays onto 3-D digital visualization system for a comprehensive digital surgical theater.

Summary

Image-guided surgery with intraoperative OCT continues to evolve and expand as the technology becomes more refined and more widely available. Continued research is needed to further validate the role for image-guided surgery in enhancing surgical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. •• Ehlers JP, Goshe J, Dupps WJ, Kaiser PK, Singh RP, Gans R, et al. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER Study RESCAN Results. JAMA Ophthalmol. 2015;133(10):1124–32. https://doi.org/10.1001/jamaophthalmol.2015.2376. One year results of the DISCOVER study with the Rescan system, one of the largest prospective microscope-integrated OCT clinical studies demonstrating potential impact on surgical decision-making and adding additional value to the surgical procedure.

    Article  PubMed  PubMed Central  Google Scholar 

  2. • Runkle A, Srivastava SK, Ehlers JP. Microscope-integrated OCT feasibility and utility with the EnFocus system in the DISCOVER study. Ophthalmic Surg, Lasers Imaging Retina. 2017;48:216–22. https://doi.org/10.3928/23258160-20170301-04. This report describes the DISCOVER study results with the EnFocus system and provides the first description in the literature of the EnFocus prototype.

    Article  Google Scholar 

  3. •• Pfau M, Michels S, Binder S, Becker MD. Clinical experience with the first commercially available intraoperative optical coherence tomography system. Ophthalmic Surg Lasers Imaging Retina. 2015;46(10):1001–8. https://doi.org/10.3928/23258160-20151027-03. This report demonstrates the utility of a microscope-integrated system in the posterior segment and independently corroborates many of the previous intraoperative OCT clinical study fundings.

    Article  PubMed  Google Scholar 

  4. •• Ehlers JP, Dupps WJ, Kaiser PK, Goshe J, Singh RP, Petkovsek D, et al. The prospective intraoperative and perioperative ophthalmic ImagiNg with optical CoherEncE TomogRaphy (PIONEER) study: 2-year results. Am J Ophthalmol. 2014;158(5):999–1007. https://doi.org/10.1016/j.ajo.2014.07.034. This report was the first in the literature to describe the potential impact of intraoperative OCT on surgical decision-making. This large multi-surgeon study utilized a microscope-mounted OCT system.

  5. Ehlers JP, Kaiser PK, Srivastava SK. Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study. Br J Ophthalmol. 2014;98(10):1329–32. https://doi.org/10.1136/bjophthalmol-2014-305294.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ehlers JP, Tao YK, Srivastava SK. The value of intraoperative optical coherence tomography imaging in vitreoretinal surgery. Curr Opin Ophthalmol. 2014;25(3):221–7. https://doi.org/10.1097/ICU.0000000000000044.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ray R, Baranano DE, Fortun JA, Schwent BJ, Cribbs BE, Bergstrom CS, et al. Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery. Ophthalmology. 2011;118(11):2212–7. https://doi.org/10.1016/j.ophtha.2011.04.012.

    Article  PubMed  Google Scholar 

  8. Ehlers JP, Han J, Petkovsek D, Kaiser PK, Singh RP, Srivastava SK. Membrane peeling-induced retinal alterations on intraoperative OCT in vitreomacular interface disorders from the PIONEER study. Invest Ophthalmol Vis Sci. 2015;56(12):7324–30. https://doi.org/10.1167/iovs.15-17526.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Scott AW, Farsiu S, Enyedi LB, Wallace DK, Toth CA. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. Am J Ophthalmol. 2009;147(2):364–73e2. https://doi.org/10.1016/j.ajo.2008.08.010.

    Article  PubMed  Google Scholar 

  10. Pichi F, Alkabes M, Nucci P, Ciardella AP. Intraoperative SD-OCT in macular surgery. Ophthalmic Surg Lasers Imaging. 2012;43(6 Suppl(6):S54–60. https://doi.org/10.3928/15428877-20121001-08.

    Article  Google Scholar 

  11. Binder S, Falkner-Radler CI, Hauger C, Matz H, Glittenberg C. Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina. 2011;31(7):1332–6. https://doi.org/10.1097/IAE.0b013e3182019c18.

    Article  PubMed  Google Scholar 

  12. Toygar O, Riemann CD. Intraoperative optical coherence tomography in macula involving rhegmatogenous retinal detachment repair with pars plana vitrectomy and perfluoron. Eye (Lond). 2016;30(1):23–30. https://doi.org/10.1038/eye.2015.230.

    Article  CAS  PubMed  Google Scholar 

  13. Ehlers JP. Intraoperative optical coherence tomography: past, present, and future. Eye (Lond). 2016;30(2):193–201. https://doi.org/10.1038/eye.2015.255.

    Article  CAS  PubMed  Google Scholar 

  14. Hahn P, Migacz J, O'Connell R, Maldonado RS, Izatt JA, Toth CA. The use of optical coherence tomography in intraoperative ophthalmic imaging. Ophthalmic Surg Lasers Imaging. 2011;42 Suppl(4):S85–94. https://doi.org/10.3928/15428877-20110627-08.

    Article  PubMed  Google Scholar 

  15. Henry CR, Berrocal AM, Hess DJ, Murray TG. Intraoperative spectral-domain optical coherence tomography in Coats’ disease. Ophthalmic Surg Lasers Imaging. 2012;43:Online:e80–4. https://doi.org/10.3928/15428877-20120719-01.

    PubMed  Google Scholar 

  16. Chavala SH, Farsiu S, Maldonado R, Wallace DK, Freedman SF, Toth CA. Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging. Ophthalmology. 2009;116(12):2448–56. https://doi.org/10.1016/j.ophtha.2009.06.003.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dayani PN, Maldonado R, Farsiu S, Toth CA. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina. 2009;29(10):1457–68. https://doi.org/10.1097/IAE.0b013e3181b266bc.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001;119(8):1179–85. https://doi.org/10.1001/archopht.119.8.1179.

    Article  CAS  PubMed  Google Scholar 

  19. Vinekar A, Sivakumar M, Shetty R, Mahendradas P, Krishnan N, Mallipatna A, et al. A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity. Eye (Lond). 2010;24(2):379–82. https://doi.org/10.1038/eye.2009.313.

    Article  CAS  Google Scholar 

  20. Soliman SE, VandenHoven C, MacKeen LD, Heon E, Gallie BL. Optical coherence tomography-guided decisions in retinoblastoma management. Ophthalmology. 2017;124(6):859–72. https://doi.org/10.1016/j.ophtha.2017.01.052.

    Article  PubMed  Google Scholar 

  21. Rootman DB, Gonzalez E, Mallipatna A, Vandenhoven C, Hampton L, Dimaras H, et al. Hand-held high-resolution spectral domain optical coherence tomography in retinoblastoma: clinical and morphologic considerations. Br J Ophthalmol. 2013;97(1):59–65. https://doi.org/10.1136/bjophthalmol-2012-302133.

    Article  PubMed  Google Scholar 

  22. Berry JL, Cobrinik D, Kim JW. Detection and intraretinal localization of an ‘Invisible’ retinoblastoma using optical coherence tomography. Ocul Oncol Pathol2016;2(3):148–152. https://doi.org/10.1159/000442167.

  23. Seider MI, Tran-Viet D, Toth CA. Macular pseudo-hole in shaken baby syndrome: underscoring the utility of optical coherence tomography under anesthesia. Retin Cases Brief Rep. 2016;10(3):283–5. https://doi.org/10.1097/ICB.0000000000000251.

    Article  PubMed  Google Scholar 

  24. Tao YK, Ehlers JP, Toth CA, Izatt JA. Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. Opt Lett. 2010;35(20):3315–7. https://doi.org/10.1364/OL.35.003315.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Invest Ophthalmol Vis Sci. 2011;52(6):3153–9. https://doi.org/10.1167/iovs.10-6720.

    Article  PubMed  PubMed Central  Google Scholar 

  26. •• Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Waterman G, Todorich B et al.Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography. Sci Rep2016;6:31689. https://doi.org/10.1038/srep31689 This report describes a microscope-integrated swept source maging platform that allows for near real-time visualization of 3D reconstructed volumetric OCT data combined with a custom stereoscopic heads-up display., 1.

  27. • Grewal DS, Bhullar PK, Pasricha ND, Carrasco-Zevallos OM, Viehland C, Keller B et al. Intraoperative 4-dimensional microscope-integrated optical coherence tomography guided 27-gauge transvitreal choroidal biopsy for choroidal melanoma. Retina2017;37:796–799. https://doi.org/10.1097/IAE.0000000000001326.. This report describes the potential role of intraoperative OCT for transvitreal biopsy for choroidal melanoma utilizing a swept source OCT system. 4.

  28. •• Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Seider MI, Izatt JA, et al. Optical coherence tomography for retinal surgery: perioperative analysis to real-time four-dimensional image-guided surgery. Invest Ophthalmol Vis Sci. 2016;57(9):OCT37–50. https://doi.org/10.1167/iovs.16-19277. This report reviews the evolution of intraoperative OCT for retinal surgery, and introduces the technological development of live volumetric microscope-integrated OCT.

  29. Shen L, Carrasco-zevallos OM, Keller B, Viehland C, Waterman G, Hahn PS, et al. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography. Biom Optics Express. 2016;7(5):1711–26. https://doi.org/10.1364/BOE.7.001711.

    Article  Google Scholar 

  30. Grewal DS, Carrasco-Zevallos OM, Gunther R, Izatt JA, Toth CA, Hahn P. Intra-operative microscope-integrated swept-source optical coherence tomography guided placement of Argus II retinal prosthesis. Acta Ophthalmol. 2017;95(5):e431–e2. https://doi.org/10.1111/aos.13123.

    Article  PubMed  Google Scholar 

  31. •• Ehlers JP, Itoh Y, Xu LT, Kaiser PK, Singh RP, Srivastava SK. Factors associated with persistent subfoveal fluid and complete macular hole closure in the PIONEER study. Invest Ophthalmol Vis Sci. 2015;56(2):1141–6. https://doi.org/10.1167/iovs.14-15765. This study describes the role of intraoperative OCT in evaluating immediate retinal microarchitectural alterations following ILM peeling in MH surgery and the potential implications of these changes for anatomic recovery.

  32. • Ehlers JP, Petkovsek DS, Yuan A, Singh RP, Srivastava SK. Intrasurgical assessment of subretinal tPA injection for submacular hemorrhage in the PIONEER study utilizing intraoperative OCT. Ophthalmic Surg Lasers Imaging Retina. 2015;46(3):327–32. https://doi.org/10.3928/23258160-20150323-05. This study was one of the first to describe the visualization of subretinal delivery of a therapeutic with intraoperative OCT.

  33. Ehlers JP, Griffith JF, Srivastava SK. Intraoperative optical coherence tomography during vitreoretinal surgery for dense vitreous hemorrhage in the Pioneer study. Retina. 2015;35(12):2537–42. https://doi.org/10.1097/IAE.0000000000000660.

    Article  PubMed  PubMed Central  Google Scholar 

  34. •• EhlersJP, KhanM, PetkovsekD, StiegelL, KaiserPK, SinghRPet al. Outcomes of intraoperative OCT-assisted epiretinal membrane surgery from the PIONEER study. Ophthalmology Retina. 2017. In press. This report is one of the first to describe long-term outcomes of image-guided surgery for membrane peeling procedures and demonstrated a low epiretinal membrane recurrence rate without mandated internal limiting membrane peeling.

  35. • Browne AW, Ehlers JP, Sharma S, Srivastava SK. Intraoperative optical coherence tomography-assisted chorioretinal biopsy in the DISCOVER study. Retina. 2017;1 https://doi.org/10.1097/IAE.0000000000001522. This report describes the potential role for intraoperative OCT in image-guided retinochoroidal biopsy. Intraoperative OCT feedback facilitated biopsy site selection, laser photocoagulation, postoperative management.

  36. Smith AG, Cost BM, Ehlers JP. Intraoperative OCT-assisted subretinal perfluorocarbon liquid removal in the DISCOVER study. Ophthalmic Surg, Lasers Imaging Retina. 2015;46(9):964–6. https://doi.org/10.3928/23258160-20151008-10.

    Article  Google Scholar 

  37. SwansonEA. OCT technology transfer and the OCT market. Optical Coherence Tomography: Technology and Applications Cham: Springer International Publishing;2015.

  38. Leica Microsystems website. Available at: http://www.leica-microsystems.com/products/optical-coherence-tomography-oct/details/product/enfocus/. Accessed July 18 2017.

  39. Carl Zeiss Meditec, Inc. website. Available at: https://www.zeiss.com/meditec/us/products/ophthalmology-optometry/retina/therapy/surgical-microscopes/opmi-lumera-700.html. Accessed July 18 2017.

  40. Haag-Streit Surgical Website. Available at: https://www.haag-streit.com/haag-streit-surgical/products/ophthalmology/ioct/. Accessed July 18 2017.

  41. Oellers P, Mahmoud TH. Surgery for proliferative diabetic retinopathy: new tips and tricks. J Ophthalmic Vis Res. 2016;11(1):93–9. https://doi.org/10.4103/2008-322X.180697.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sharma S, Hariprasad SM, Mahmoud TH. Surgical management of proliferative diabetic retinopathy. Ophthalmic Surg Lasers Imaging Retina. 2014;45(3):188–93. https://doi.org/10.3928/23258160-20140505-01.

    Article  PubMed  Google Scholar 

  43. Khan M, Srivastava SK, Reese JL, Shwani Z, Ehlers JP. Intraoperative OCT-assisted surgery for proliferative diabetic retinopathy in the DISCOVER study. Ophthalmology Retina2017. In press.

  44. Luo YHL, da Cruz L. The Argus® II retinal prosthesis system. Prog Retin Eye Res. 2016;50:89–107. https://doi.org/10.1016/j.preteyeres.2015.09.003.

    Article  PubMed  Google Scholar 

  45. Ho AC, Humayun MS, Dorn JD, Da Cruz L, Dagnelie G, Handa J, et al. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology. 2015;122(8):1547–54. https://doi.org/10.1016/j.ophtha.2015.04.032.

    Article  PubMed  PubMed Central  Google Scholar 

  46. • Seider MI, Hahn P. Argus II retinal prosthesis malrotation and repositioning with intraoperative optical coherence tomography in a posterior staphyloma. Clin Ophthalmol. 2015;9:2213–6. https://doi.org/10.2147/OPTH.S96570. This report was the first report to describe the potential role of intraoperative OCT during Argus II retinal prosthesis placement with an external OCT system.

  47. • Rachitskaya AV, Yuan A, Marino MJ, Reese J, Ehlers JP. Intraoperative OCT imaging of the Argus II retinal prosthesis system. Ophthalmic Surg Lasers Imaging Retina. 2016;47(11):999–1003. https://doi.org/10.3928/23258160-20161031-03. This report demonstrates the feasibility of imaging the Argus II electrode array with both a portable and microscope-integrated OCT systems. Intraoperative OCT was helpful to identify array-retina distance and allowed immediate position adjustment.

  48. Rachitskaya AV, Ehlers JP, Yuan A. Intraoperative OCT of a retinal tack. Ophthalmol Retina. 2017;1(5):420. https://doi.org/10.1016/j.oret.2017.01.005.

  49. •• Ehlers JP, Srivastava SK, Feiler D, Noonan AI, Rollins AM, Tao YK. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS One. 2014;9(8):e105224. https://doi.org/10.1371/journal.pone.0105224. This report describes a second-generation prototype microscope-integrated OCT system along with key advances in integrative technology for intraoperative OCT that may be critical to the widespread use of this technology in everyday clinical practice, such as OCT-compatible instrumentation and heads-up display systems.

  50. Shulman M, Sepah YJ, Chang S, Abrams GW, Do DV, Nguyen QD. Management of retained subretinal perfluorocarbon liquid. Ophthalmic Surg Lasers Imaging Retina. 2013;44(6):577–83. https://doi.org/10.3928/23258160-20131105-07.

    Article  PubMed  Google Scholar 

  51. MacLaren RE, Bennett J, Schwartz SD. Gene therapy and stem cell transplantation in retinal disease: the new frontier. Ophthalmology. 2016;123:S98–S106. https://doi.org/10.1016/j.ophtha.2016.06.041.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Weleber RG, Pennesi ME, Wilson DJ, Kaushal S, Erker LR, Jensen L, et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123(7):1606–20. https://doi.org/10.1016/j.ophtha.2016.03.003.

    Article  PubMed  Google Scholar 

  53. •• GregoriNZ, LamBL, Davis JL. Intraoperative use of microscope-integrated optical coherence tomography for subretinal gene therapy delivery. Retina. 2017. This study described the role of intraoperative OCT in providing feedback during subretinal gene therapy delivery. Microscope-integrated OCT provided real-time visualization of retina-instrument interaction confirming appropriate expansion of the subretinal space and accurate subretinal delivery.

  54. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46. https://doi.org/10.1056/NEJMoa1608368.

    Article  CAS  PubMed  Google Scholar 

  55. Muni RH, Kohly RP, Charonis AC, Lee TC. Retinoschisis detected with handheld spectral-domain optical coherence tomography in neonates with advanced retinopathy of prematurity. Arch Ophthalmol. 2010;128(1):57–62. https://doi.org/10.1001/archophthalmol.2009.361.

    Article  PubMed  Google Scholar 

  56. Coupland SE, Damato B. Understanding intraocular lymphomas. Clin Exp Ophthalmol. 2008;36(6):564–78. https://doi.org/10.1111/j.1442-9071.2008.01843.x.

    Article  PubMed  Google Scholar 

  57. Grixti A, Angi M, Damato BE, Jmor F, Konstantinidis L, Groenewald C, et al. Vitreoretinal surgery for complications of choroidal tumor biopsy. Ophthalmology. 2014;121(12):2482–8. https://doi.org/10.1016/j.ophtha.2014.06.029.

    Article  PubMed  Google Scholar 

  58. Bagger M, Andersen MT, Heegaard S, Andersen MK, Kiilgaard JF. Transvitreal retinochoroidal biopsy provides a representative sample from choroidal melanoma for detection of chromosome 3 aberrations. Investig Ophthalmol Vis Sci. 2015;56(10):5917–24. https://doi.org/10.1167/iovs.15-17349.

    Article  Google Scholar 

  59. Nagiel A, McCannel CA, Moreno C, McCannel TA. Vitrectomy-assisted biopsy for molecular prognostication of choroidal melanoma 2 mm or less in thickness with a 27-gauge cutter. Retina. 2017;37(7):1377–82. https://doi.org/10.1097/IAE.0000000000001362.

    Article  PubMed  Google Scholar 

  60. Grewal DS, Cummings TJ, Mruthyunjaya P. Outcomes of 27-gauge vitrectomy-assisted choroidal and subretinal biopsy. Ophthalmic Surg, Lasers Imaging Retina. 2017;48(5):406–15. https://doi.org/10.3928/23258160-20170428-07.

    Article  Google Scholar 

  61. Ohno-Matsui K, Lai TY, Lai CC, Cheung CM. Updates of pathologic myopia. Prog Retin Eye Res. 2016;52:156–87. https://doi.org/10.1016/j.preteyeres.2015.12.001.

    Article  PubMed  Google Scholar 

  62. Kumar A, Ravani R, Mehta A, Simakurthy S, Dhull C. Outcomes of microscope-integrated intraoperative optical coherence tomography-guided center-sparing internal limiting membrane peeling for myopic traction maculopathy: a novel technique. Int Ophthalmol. 2017; https://doi.org/10.1007/s10792-017-0644-x.

  63. Shimada N, Sugamoto Y, Ogawa M, Takase H, Ohno-Matsui K. Fovea-sparing internal limiting membrane peeling for myopic traction maculopathy. Am J Ophthalmol. 2012;154(4):693–701. https://doi.org/10.1016/j.ajo.2012.04.013.

    Article  PubMed  Google Scholar 

  64. •• EhlersJP, UchidaA, SrivastavaSK. Intraoperative optical coherence tomography compatible surgical instruments for real-time image-guided ophthalmic surgery. Br J Ophthalmol. 2017. Epub ahead of print. https://doi.org/10.1136/bjophthalmol-2017-310530. This report evaluates imaging features of novel surgical instrument prototypes composed of semitransparent material during real-time intraoperative OCT in simulated surgery and compares their visibility with conventional metallic instruments.

  65. El-Haddad MT, Tao YK. Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers. Biomedical Optics Express. 2015;6(8):3014–31. https://doi.org/10.1364/BOE.6.003014.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Asencio-Duran M, Manzano-Munoz B, Vallejo-Garcia JL, Garcia-Martinez J. Complications of macular peeling. J Ophthalmol2015;2015:467814. https://doi.org/10.1155/2015/467814.

  67. Uchida A, Srivastava SK, Ehlers JP. Analysis of retinal architectural changes using intraoperative OCT following surgical manipulations with membrane flex loop in the DISCOVER study. Invest Ophthalmol Vis Sci. 2017;58(9):3440–4. https://doi.org/10.1167/iovs.17-21584.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ehlers JP, Xu D, Kaiser PK, Singh RP, Srivastava SK. Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography. Retina. 2014;34(2):213–21. https://doi.org/10.1097/IAE.0b013e318297daf3.

    Article  PubMed  Google Scholar 

  69. Itoh Y, Vasanji A, Ehlers JP. Volumetric ellipsoid zone mapping for enhanced visualisation of outer retinal integrity with optical coherence tomography. Br J Ophthalmol. 2016;100(3):295–9. https://doi.org/10.1136/bjophthalmol-2015-307105. bjophthalmol-2015-307105 [pii]

    Article  PubMed  Google Scholar 

  70. Xu D, Yuan A, Kaiser PK, Srivastava SK, Singh RP, Sears JE, et al. A novel segmentation algorithm for volumetric analysis of macular hole boundaries identified with optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(1):163–9. https://doi.org/10.1167/iovs.12-10246.

    Article  PubMed  Google Scholar 

  71. Tao YK, Srivastava SK, Ehlers JP. Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers. Biomed Opt Express. 2014;5(6):1877–85. https://doi.org/10.1364/BOE.5.001877.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Eckardt C, Paulo EB. Heads-up surgery for vitreoretinal procedures: an experimental and clinical study. Retina. 2016;36(1):137–47. https://doi.org/10.1097/IAE.0000000000000689.

    Article  PubMed  Google Scholar 

  73. Yonekawa Y. Seeing the world through 3-D glasses. Retina Today. October 2016;2016:28–31. 4

  74. Adam MK, Thornton S, Regillo CD, Park C, Ho AC, Hsu J. Minimal endoillumination levels and display luminous emittance during three-dimensional heads-up vitreoretinal surgery. Retina. 2016; https://doi.org/10.1097/IAE.0000000000001420.

  75. Barak A, Zeitouny A, Loewenstein A. Augmented reality video microscope (ARVM) for retina surgery as a replacement of operational microscopes. ARVO Meeting Abstracts. 2017;58:1189.

    Google Scholar 

  76. Nasseri MA, Eslami A, Zapp DM, Bohnacker S, Zhou M, Lohmann C, et al. Intraoperative OCT guided robotic sub-retinal surgery. ARVO Meeting Abstracts. 2017;58:5003.

    Google Scholar 

  77. Sleiman K, Vajzovic L, Carrasco-Zevallos O, Klingeborn M, Dandridge A, Viehland C, et al. Four-dimensional microscope-integrated optical coherence tomography (4D MIOCT) guidance in subretinal surgery. ARVO Meeting Abstracts. 2017;58:1190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justis P. Ehlers.

Ethics declarations

Conflict of Interest

Justis Ehlers reports grants from NIH; the Ohio Department of Development TECH-13-059 (JPE, SKS); Research to Prevent Blindness (Cole Eye Institutional Grant), an unrestricted travel grant from Alcon Novartis Hida Memorial Award 2015, funded by Alcon Japan Ltd. (AU); grants from Aerpio; personal fees from Leica, Zeiss, Santen, and Roche; and grants and personal fees from Genentech, Regeneron, Thrombogenics. In addition, Dr. Ehlers has a patent Volumetric segmentation of pathology issued, and a patent Microscope mount for OCT pending.

Sunil Srivastava reports grants from the Ohio Dept Development TECH-13-059; Research to Prevent Blindness (Cole Eye Institutional Grant); personal fees from Santen, Bausch and Lomb, and Allergan; grants and personal fees from Alcon, Zeiss; and grants from Gilead, outside the submitted work. In addition, Dr. Srivastava has a patent Volumetric segmentation of pathology issued, and a patent Microscope mount for OCT licensed to Leica.

Atsuro Uchida reports an unrestricted travel grant from the Alcon Novartis Hida Memorial Award 2015 funded by the Alcon Japan Ltd., outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Retina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchida, A., Srivastava, S.K. & Ehlers, J.P. Update on the Intraoperative OCT: Where Do We Stand?. Curr Ophthalmol Rep 6, 24–35 (2018). https://doi.org/10.1007/s40135-018-0160-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-018-0160-9

Keywords

Navigation